Get Certified with Killexams.com 000-635 Exam Prep. | braindumps | Great Dumps

Pass4sure 000-635 Exam test system is required for 000-635 prep - it is made of Pass4sure 000-635 exam prep - braindumps - examcollection and VCE - braindumps - Great Dumps

Killexams 000-635 dumps | 000-635 actual test Questions | http://www.sraigalleries.com/

000-635 Fundamentals of Rational Rose

Exam Dumps Collected by Killexams.com

Exam Dumps Updated On : Click To Check Update




Valid and Updated 000-635 Dumps | actual Questions 2019

100% cogent 000-635 actual Questions - Updated on daily basis - 100% Pass Guarantee



000-635 test Dumps Source : Download 100% Free 000-635 Dumps PDF

Test Number : 000-635
Test title : Fundamentals of Rational Rose
Vendor title : IBM
braindumps : 45 Dumps Questions

Pass 000-635 test with 000-635 braindumps and VCE practice test
If you are searching for IBM 000-635 Dumps of actual questions to pass the Fundamentals of Rational Rose Exam? Killexams.com is the perquisite place. You can download 100% free 000-635 dumps before you buy plenary version for your 000-635 test practice. 000-635 vce test simulator is the best software to practice your 000-635 exam.

It is a astronomical struggle to select friendly braindumps provider from hundreds of substandard dumps providers. If your search remain up on substandard braindumps provider, your next certification will become a nightmare. It feels infatuation looser when you fail in certification exam. This is just because, you relied on invalid and outdated provider. They are not epigram that every 000-635 braindumps provider is a fake. There are some friendly 000-635 actual test questions provider that occupy their own resources to accept most updated and cogent 000-635 braindumps. Killexams.com is one of them. They occupy their own team that collects 100% valid, up to date and trustworthy 000-635 dumps that labor in actual test infatuation charm. You just occupy to visit https://killexams.com/pass4sure/exam-detail/000-635 and download 100% free PDF dumps of 000-635 test and review. If you feel satisfied, register for 000-635 dumps PDF plenary version with VCE practice test and become member of greate achievers. They value their considerable customers. You will surely forward us your reviews about 000-635 test sustain later after passing actual 000-635 exam.

Features of Killexams 000-635 dumps
-> 000-635 Dumps download Access in just 5 min.
-> Complete 000-635 Questions Bank
-> 000-635 test Success Guarantee
-> Guaranteed actual 000-635 test Questions
-> Latest and Updated 000-635 Questions and Answers
-> Verified 000-635 Answers
-> download 000-635 test Files anywhere
-> Unlimited 000-635 VCE test Simulator Access
-> Unlimited 000-635 test Download
-> considerable Discount Coupons
-> 100% Secure Purchase
-> 100% Confidential.
-> 100% Free Dumps Questions for evaluation
-> No Hidden Cost
-> No Monthly Subscription
-> No Auto Renewal
-> 000-635 test Update Intimation by Email
-> Free Technical Support

Discount Coupon on plenary 000-635 Dumps Question Bank;
WC2017: 60% Flat Discount on each exam
PROF17: 10% Further Discount on Value Greatr than $69
DEAL17: 15% Further Discount on Value Greater than $99



Killexams 000-635 Customer Reviews and Testimonials


Extract of complete 000-635 route contents in Questions and Answers layout.
Via enrolling me for killexams.com is an opportunity to accept myself passed in 000-635 exam. Its a threat to accept myself thrugh the difficult questions of 000-635 exam. If I could not occupy the haphazard to enroll in this internet site I will occupy no longer been capable of cleanly 000-635 exam. It became a glancing opportunity for me that I occupy been given achievement in it so with out problem and made myself so comfortable joining this internet site. After failing in this test I was shattered and then I institute this Internet website that made my manner very smooth.


I site complete my efforts on Internet and institute killexams 000-635 actual question bank.
The association time for 000-635 test was clearly a pleasant sustain for me. Effectively passing, I actually occupy institute out a route to pass complete of the in addition degrees. Because of killexams.com questions and answers for complete the assistance. I had restrained time for preparation but killexams.com brain dumps became out to live a succor for me. It had sizable question and answers that made me scheme in a brief compass.


I institute an excellent source for 000-635 question .
I am no longer a fan of online brain dumps, because they will live often published by means of irresponsible folks that lie to you into gaining learning of belongings you conclude not need and lacking things that you actually need to know. Not killexams. This organization gives clearly cogent questions answers that succor you accept thrugh your test preparation. This is how I passed 000-635 exam. First time, First I depended on slack on-line stuff and I failed. I got killexams.com 000-635 test simulator - and I passed. This is the most effective proof I need. Thanks killexams.


Proper vicinity to locate 000-635 braindumps paper.
I was very confused once I failed my 000-635 exam. Searching the Internet advised me that there is a internet site killexams.com which is the dumps that I want to pass the 000-635 test inside no time. I purchase the 000-635 practice % containing questions answers and test simulator, organized and sit in the test and got 98% marks. Thanks to the killexams.com team.


Party is over! Time to study and pass the 000-635 exam.
that is an cogent and dependable resource, with genuine 000-635 questions and accurate answers. The test simulator works very smooth. With extra info and suitable customer support, this is an incredibly desirable provide. No free random braindumps available on line can test with the fine and the coolest infatuation I had with Killexams. I passed with a virtually excessive score, so I am telling this primarily based on my private experience.


Fundamentals of Rational Rose certification

fresh advances and functions of machine getting to know in solid-state substances science | 000-635 Dumps and actual test Questions with VCE practice Test

  • 1.

    Marsland, S. machine learning (CRC Press, Taylor & Francis Inc., Boca Raton, FL, 2014).

  • 2.

    Silver, D. et al. getting to know the video game of proceed with profound neural networks and tree search. Nature 529, 484–489 (2016).

  • 3.

    Bojarski, M. et al. conclusion to remain gaining learning of for self-riding automobiles. Preprint at arXiv:1604.07316 (2016).

  • four.

    He, k., Zhang, X., Ren, S. & sun, J. Delving profound into rectifiers: surpassing human-degree performance on ImageNet classification. In 2015 IEEE international convention on laptop vision (ICCV) (eds Bajcsy, R. & Hager, G.) 1026–1034 (IEEE, Piscataway, NJ, 2015).

  • 5.

    Liu, S.-S. & Tian, Y.-T. facial features awareness components based on gabor wavelet facets and fractional vitality polynomial kernel PCA. In Advances in Neural Networks - ISNN 2010 (eds Zhang, L., Lu, B.-L. & Kwok, J.) a hundred and forty four–151 (Springer, Berlin, Heidelberg, 2010).

  • 6.

    Waibel, A. & Lee, okay.-F. (eds) Readings in Speech consciousness (Morgan Kaufmann, Burlington, MA, 1990).

  • 7.

    Pazzani, M. & Billsus, D. studying and revising person profiles: the identification of pleasing net sites. Mach. study. 27, 313–331 (1997).

  • eight.

    Chan, P. ok. & Stolfo, S. J. towards scalable gaining learning of with non-uniform category and value distributions: a case resolve in bank card fraud detection. In KDD’98 Proc. Fourth international convention on odds Discovery and data Mining (eds Agrawal, R., Stolorz, P. & Piatetsky, G.) 164–168 (AAAI Press, astronomical apple, the astronomical apple, 1998).

  • 9.

    Guzella, T. S. & Caminhas, W. M. A overview of computing device getting to know techniques to unsolicited mail filtering. knowledgeable Syst. Appl. 36, 10206–10222 (2009).

  • 10.

    Huang, C.-L., Chen, M.-C. & Wang, C.-J. credit score scoring with an information mining approach in accordance with succor vector machines. knowledgeable Syst. Appl. 33, 847–856 (2007).

  • 11.

    Baldi, P. & Brunak, S. Bioinformatics: The machine learning fashion (The MIT Press, Cambridge, MA, 2001).

  • 12.

    Noordik, J. H. Cheminformatics developments: background, reviews and existing research (IOS Press, Amsterdam, 2004).

  • 13.

    Rajan, okay. materials informatics. Mater. today 8, 38–forty five (2005).

  • 14.

    Martin, R. M. electronic constitution: primary conception and functional strategies (Cambridge university Press, Cambridge, 2008).

  • 15.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

  • sixteen.

    Kohn, W. & Sham, L. J. Self-constant equations including alternate and correlation outcomes. Phys. Rev. a hundred and forty, A1133–A1138 (1965).

  • 17.

    Olson, G. B. Designing a new fabric world. Science 288, 993–998 (2000).

  • 18.

    Oganov, A. R. (ed.) contemporary strategies of Crystal constitution Prediction (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010).

  • 19.

    Oganov, A. R. & Glass, C. W. Crystal structure prediction the disburse of ab initio evolutionary strategies: concepts and applications. J. Chem. Phys. 124, 244704 (2006).

  • 20.

    Newnham, R. E. houses of materials: anisotropy, symmetry, constitution (Oxford institution Press, Oxford, 2005).

  • 21.

    Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

  • 22.

    eco-friendly, M. L. et al. pleasurable the pledge of the substances genome initiative with excessive-throughput experimental methodologies. Appl. Phys. Rev. four, 011105 (2017).

  • 23.

    Koinuma, H. & Takeuchi, I. Combinatorial strong-state chemistry of inorganic materials. Nat. Mater. 3, 429–438 (2004).

  • 24.

    Suram, S. k., Haber, J. A., Jin, J. & Gregoire, J. M. generating assistance-wealthy high-throughput experimental substances genomes using functional clustering by route of multitree genetic programming and information conception. ACS Comb. Sci. 17, 224–233 (2015).

  • 25.

    Potyrailo, R. et al. Combinatorial and high-throughput screening of materials libraries: review of state of the art. ACS Comb. Sci. 13, 579–633 (2011).

  • 26.

    Walsh, A. the search for new performance. Nat. Chem. 7, 274–275 (2015).

  • 27.

    Lookman, T., Eidenbenz, S., Alexander, F. & Barnes, C. (eds) substances Discovery and Design through capability of records Science and most trustworthy learning (Springer exotic Publishing, Basel, 2018).

  • 28.

    Ryan, okay., Lengyel, J. & Shatruk, M. Crystal structure prediction by route of profound studying. J. Am. Chem. Soc. a hundred and forty, 10158–10168 (2018).

  • 29.

    Nouira, A., Sokolovska, N. & Crivello, J.-C. Crystalgan: discovering to learn crystallographic constructions with generative adversarial networks. Preprint at arXiv:1810.11203 (2018).

  • 30.

    Graser, J., Kauwe, S. okay. & Sparks, T. D. machine researching and power minimization methods for crystal structure predictions: a evaluation and new horizons. Chem. Mater. 30, 3601–3612 (2018).

  • 31.

    Balachandran, P. V., Kowalski, B., Sehirlioglu, A. & Lookman, T. Experimental search for high-temperature ferroelectric perovskites guided by using two-step desktop researching. Nat. Commun. 9, 1668 (2018).

  • 32.

    Oliynyk, A. O., Adutwum, L. A., Harynuk, J. J. & Mar, A. Classifying crystal structures of binary compounds AB through cluster resolution office option and pilot vector computer analysis. Chem. Mater. 28, 6672–6681 (2016).

  • 33.

    Li, W., Jacobs, R. & Morgan, D. Predicting the thermodynamic stability of perovskite oxides the disburse of machine discovering models. Comput. Mater. Sci. a hundred and fifty, 454–463 (2018).

  • 34.

    Ward, L. et al. together with crystal constitution attributes in laptop studying models of formation energies by the disburse of Voronoi tessellations. Phys. Rev. B ninety six, 024104 (2017).

  • 35.

    Faber, F. A., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. laptop gaining learning of energies of 2 million elpasolite (ABC2D6) crystals. Phys. Rev. Lett. 117, 135502 (2016).

  • 36.

    Zheng, X., Zheng, P. & Zhang, R.-Z. machine studying fabric properties from the intermittent desk the disburse of convolutional neural networks. Chem. Sci. 9, 8426–8432 (2018).

  • 37.

    Carrete, J., Li, W., Mingo, N., Wang, S. & Curtarolo, S. finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors by the disburse of excessive-throughput substances modeling. Phys. Rev. X 4, 011019 (2014).

  • 38.

    Kim, C., Pilania, G. & Ramprasad, R. From organized excessive-throughput statistics to phenomenological concept using computing device discovering: the instance of dielectric breakdown. Chem. Mater. 28, 1304–1311 (2016).

  • 39.

    Seko, A., Maekawa, T., Tsuda, okay. & Tanaka, I. computer learning with systematic density-useful theory calculations: application to melting temperatures of single- and binary-component solids. Phys. Rev. B 89, 054303 (2014).

  • forty.

    Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of fabric homes. Phys. Rev. Lett. a hundred and twenty, 145301 (2018).

  • 41.

    Isayev, O. et al. widely wide-spread fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. eight, 15679 (2017).

  • 42.

    Furmanchuk, A., Agrawal, A. & Choudhary, A. Predictive analytics for crystalline materials: bulk modulus. RSC Adv. 6, 95246–95251 (2016).

  • forty three.

    Kauwe, S. okay., Graser, J., Vazquez, A. & Sparks, T. D. desktop learning prediction of warmth potential for solid inorganics. Integr. Mater. Manuf. Innov. 7, forty three–51 (2018).

  • forty four.

    Kim, C., Pilania, G. & Ramprasad, R. desktop discovering assisted predictions of intrinsic dielectric breakdown power of ABX3 perovskites. J. Phys. Chem. C a hundred and twenty, 14575–14580 (2016).

  • forty five.

    Yuan, F. & Mueller, T. deciding on models of dielectric breakdown energy from high-throughput records via genetic programming. Sci. Rep. 7, 17594 (2017).

  • 46.

    Gaultois, M. W. et al. standpoint: net-primarily based computing device studying models for real-time screening of thermoelectric materials residences. APL Mater. 4, 053213 (2016).

  • 47.

    Ju, S. et al. Designing nanostructures for phonon transport by means of Bayesian optimization. Phys. Rev. X 7, 021024 (2017).

  • 48.

    Seko, A., Hayashi, H., Nakayama, okay., Takahashi, A. & Tanaka, I. illustration of compounds for computing device-studying prediction of physical residences. Phys. Rev. B ninety five, 144110 (2017).

  • forty nine.

    Sosso, G. C., Deringer, V. L., Elliott, S. R. & Csányi, G. realizing the thermal houses of amorphous solids the usage of computer-researching-primarily based interatomic potentials. Mol. Simul. 44, 866–880 (2018).

  • 50.

    Wei, H., Zhao, S., Rong, Q. & Bao, H. Predicting the useful thermal conductivities of composite materials and porous media via desktop studying strategies. Int. J. warmth. Mass Tran. 127, 908–916 (2018).

  • fifty one.

    Wu, Y.-J., Sasaki, M., Goto, M., Fang, L. & Xu, Y. Electrically conductive thermally insulating Bi–Si nanocomposites by using interface design for thermal administration. ACS Appl. Nano Mater. 1, 3355–3363 (2018).

  • fifty two.

    Jalem, R. et al. Bayesian-driven first-principles calculations for accelerating exploration of quickly ion conductors for rechargeable battery utility. Sci. Rep. eight, 5845 (2018).

  • 53.

    Rosenblatt, F. The perceptron: a probabilistic mannequin for information storage and organization within the mind. Psychol. Rev. 65, 386 (1958).

  • 54.

    McCulloch, W. S. & Pitts, W. A ratiocinative calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).

  • fifty five.

    LeCun, Y., Bengio, Y. & Hinton, G. profound getting to know. Nature 521, 436–444 (2015).

  • fifty six.

    Ye, W., Chen, C., Wang, Z., Chu, I.-H. & Ong, S. P. profound neural networks for accurate predictions of crystal stability. Nat. Commun. 9, 3800 (2018).

  • fifty seven.

    Ren, Z. & Lee, Y. J. cross-area self-supervised multi-assignment characteristic getting to know using synthetic imagery. In 2018 IEEE/CVF convention on desktop imaginative and prescient and pattern focus (eds Bai, Y., Zhang, Y., Ding, M. & Ghanem, B.) 762–771 (IEEE, Piscataway, NJ, 2018).

  • 58.

    Rajan, okay. materials informatics: the materials gene and astronomical facts. Annu. Rev. Mater. Res. 45, 153–169 (2015).

  • 59.

    Mueller, T., Kusne, A. G. & Ramprasad, R. in experiences in Computational Chemistry (eds Parrill, A. L. & Lipkowitz, k. B.) Ch. 4 (John Wiley & Sons, Inc., Hoboken, NJ, 2016).

  • 60.

    Correa-Baena, J.-P. et al. Accelerating substances pile by the disburse of automation, laptop learning, and excessive-performance computing. Joule 2, 1410–1420 (2018).

  • sixty one.

    Liu, Y., Zhao, T., Ju, W. & Shi, S. materials discovery and design the usage of computer getting to know. J. Mater. 3, 159–177 (2017).

  • 62.

    Ward, L. et al. recommendations for accelerating the adoption of substances informatics. MRS Bull. forty three, 683–689 (2018).

  • 63.

    Butler, okay. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. machine getting to know for molecular and substances science. Nature 559, 547–555 (2018).

  • 64.

    Butler, okay. T., Frost, J. M., Skelton, J. M., Svane, k. L. & Walsh, A. Computational substances design of crystalline solids. Chem. Soc. Rev. 45, 6138–6146 (2016).

  • sixty five.

    Shi, S. et al. Multi-scale computation strategies: Their applications in lithium-ion battery analysis and building. Chin. Phys. B 25, 018212 (2016).

  • 66.

    Ward, L. & Wolverton, C. Atomistic calculations and materials informatics: a overview. Curr. Opin. solid state Mater. Sci. 21, 167–176 (2017).

  • sixty seven.

    Alpaydin, E. Introduction to laptop studying (The MIT Press, Cambridge, MA, 2014).

  • sixty eight.

    Sutton, R. S. & Barto, A. G. Reinforcement discovering (The MIT Press, Cambridge, MA, 2018).

  • sixty nine.

    Nguyen, H., Maeda, S.-i. & Oono, ok. Semi-supervised getting to know of hierarchical representations of molecules the usage of neural message passing. Preprint at arXiv:1711.10168 (2017).

  • 70.

    Geman, S., Bienenstock, E. & Doursat, R. Neural networks and the bias/variance dilemma. Neural Comput. four, 1–58 (1992).

  • 71.

    Sammut, C. & Webb, G. I. Encyclopedia of computing device getting to know and information Mining (Springer Publishing business, integrated, manhattan, ny, 2017).

  • 72.

    Picard, R. R. & prepare dinner, R. D. cross-validation of regression fashions. J. Am. Stat. Assoc. 79, 575–583 (1984).

  • 73.

    Meredig, B. et al. Can desktop learning establish the next high-temperature superconductor? analyzing extrapolation performance for substances discovery. Mol. Syst. Des. Eng. 3, 819–825 (2018).

  • 74.

    Tropsha, A., Gramatica, P. & Gombar, V. k. The value of being earnest: validation is the absolute basic for successful application and interpretation of QSPR models. QSAR Comb. Sci. 22, sixty nine–seventy seven (2003).

  • seventy five.

    Golbraikh, A. & Tropsha, A. watch out for q2. J. Mol. Graph. Modell. 20, 269–276 (2002).

  • seventy six.

    Stanev, V. et al. computer gaining learning of modeling of superconducting necessary temperature. npj Comput. Mater. four, 29 (2018).

  • 77.

    Zhang, Y. & Ling, C. a strategy to practice desktop learning to wee datasets in materials science. npj Comput. Mater. four, 25 (2018).

  • 78.

    Jain, A. et al. Commentary: The materials task: a materials genome fashion to accelerating substances innovation. APL Mater. 1, 011002 (2013).

  • 79.

    F. H. Allen, G. G. & Sievers, R. (eds) Crystallographic Databases (overseas Union of Crystallography, Chester, 1987).

  • eighty.

    Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. materials design and discovery with high-throughput density purposeful conception: the open quantum materials database (OQMD). JOM sixty five, 1501–1509 (2013).

  • eighty one.

    Kirklin, S. et al. The open quantum substances database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015).

  • 82.

    Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The Cambridge structural database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. seventy two, 171–179 (2016).

  • eighty three.

    Hachmann, J. et al. The Harvard lucid power undertaking: enormous-scale computational screening and design of biological photovoltaics on the area neighborhood grid. J. Phys. Chem. Lett. 2, 2241–2251 (2011).

  • eighty four.

    Puchala, B. et al. The materials commons: a collaboration platform and counsel repository for the global materials community. JOM sixty eight, 2035–2044 (2016).

  • 85.

    Mullin, R. Citrine informatics. CEN Glob. Enterp. ninety five, 34–34 (2017).

  • 86.

    de Jong, M. et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci. information 2, 150009 (2015).

  • 87.

    Zakutayev, A. et al. An open experimental database for exploring inorganic substances. Sci. facts 5, 180053 (2018).

  • 88.

    Villars, P., Okamoto, H. & Cenzual, k. ASM Alloy section Diagrams Database (ASM foreign, materials Park, OH, 2006).

  • 89.

    Gražulis, S. et al. Crystallography open database (COD): an open-access collection of crystal buildings and platform for world-huge collaboration. Nucleic Acids Res. forty, D420–D427 (2011).

  • ninety.

    Villars, P. et al. The Pauling file, binaries version. J. Alloy. Comp. 367, 293–297 (2004).

  • ninety one.

    Gorai, P. et al. TE design lab: a digital laboratory for thermoelectric material design. Comput. Mater. Sci. 112, 368–376 (2016).

  • ninety two.

    Haastrup, S. et al. The Computational 2d substances Database: excessive-throughput modeling and discovery of atomically skinny crystals. 2nd Mater. 5, 042002 (2018).

  • ninety three.

    Wilkinson, M. D. et al. The unprejudiced guiding principles for scientific records administration and stewardship. Sci. information three, 160018 (2016).

  • 94.

    Draxl, C. & Scheffler, M. NOMAD: the reasonable theory for huge data-driven materials science. MRS Bull. forty three, 676–682 (2018).

  • ninety five.

    Raccuglia, P. et al. computing device-discovering-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).

  • ninety six.

    Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C. & Scheffler, M. huge records of substances science: essential office of the descriptor. Phys. Rev. Lett. 114, 105503 (2015).

  • ninety seven.

    Bengio, Y., Courville, A. & Vincent, P. illustration gaining learning of: a assessment and new perspectives. IEEE Trans. pattern Anal. Mach. Intell. 35, 1798–1828 (2013).

  • 98.

    Bellman, R. E. Adaptive control methods: A Guided Tour (Princeton tuition Press, Princeton, NJ, 2015).

  • 99.

    Schmidt, J. et al. Predicting the thermodynamic stability of solids combining density useful conception and desktop discovering. Chem. Mater. 29, 5090–5103 (2017).

  • one hundred.

    Bartóok, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).

  • 101.

    Raff, L., Komanduri, R. & Hagan, M. Neural Networks in Chemical response Dynamics (Oxford university Press, Oxford, 2012).

  • 102.

    Braams, B. J. & Bowman, J. M. Permutationally invariant talents power surfaces in excessive dimensionality. Int. Rev. Phys. Chem. 28, 577–606 (2009).

  • 103.

    Swamidass, S. J. et al. Kernels for wee molecules and the prediction of mutagenicity, toxicity and anti-melanoma exercise. Bioinformatics 21, i359–i368 (2005).

  • 104.

    Weyl, H. The Classical corporations: Their Invariants and Representations (Princeton school Press, Princeton, NJ, 1997).

  • a hundred and five.

    Jensen, F. Introduction to Computational Chemistry (Wiley, long island, astronomical apple, 2013).

  • 106.

    Rupp, M., Tkatchenko, A., Müller, okay.-R. & von Lilienfeld, O. A. quick and remedy modeling of molecular atomization energies with computer discovering. Phys. Rev. Lett. 108, 058301 (2012).

  • 107.

    Moussa, J. E. touch upon «quickly and accurate modeling of molecular atomization energies with desktop discovering». Phys. Rev. Lett. 109, 059801 (2012).

  • 108.

    Faber, F., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Crystal structure representations for computing device learning fashions of formation energies. Int. J. Quantum Chem. a hundred and fifteen, 1094–1101 (2015).

  • 109.

    Schütt, k. T. et al. the route to picture crystal buildings for desktop learning: against mercurial prediction of electronic residences. Phys. Rev. B 89, 205118 (2014).

  • a hundred and ten.

    Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional capabilities-energy surfaces. Phys. Rev. Lett. ninety eight, 146401 (2007).

  • 111.

    Artrith, N. & urban, A. An implementation of synthetic neural-community potentials for atomistic substances simulations: performance for TiO2. Comput. Mater. Sci. 114, 135–150 (2016).

  • 112.

    Behler, J. point of view: computer discovering potentials for atomistic simulations. J. Chem. Phys. a hundred forty five, 170901 (2016).

  • 113.

    Seko, A., Takahashi, A. & Tanaka, I. Sparse representation for a feasible power floor. Phys. Rev. B ninety, 024101 (2014).

  • 114.

    Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, devoid of the electrons. Phys. Rev. Lett. 104, 136403 (2010).

  • a hundred and fifteen.

    Khersonskii, V. okay., Moskalev, A. N. & Varshalovich, D. A. Quantum concept of Angular Momemtum (World Scientific Publishing, Singapore, 1988).

  • 116.

    Meremianin, A. V. Multipole expansions in 4-dimensional hyperspherical harmonics. J. Phys. A Math. Gen. 39, 3099–3112 (2006).

  • 117.

    Artrith, N., urban, A. & Ceder, G. effective and accurate desktop-gaining learning of interpolation of atomic energies in compositions with many species. Phys. Rev. B ninety six, 014112 (2017).

  • 118.

    Sanville, E., Bholoa, A., Smith, R. & Kenny, S. D. Silicon potentials investigated the usage of density purposeful conception geared up neural networks. J. Phys. Condens. live counted 20, 285219 (2008).

  • 119.

    Baskes, M. decision of modified embedded atom formulation parameters for nickel. Mater. Chem. Phys. 50, 152–158 (1997).

  • a hundred and twenty.

    Kuz’min, V. E. et al. Hierarchic system of QSAR models (1D–4D) on the bottom of simplex representation of molecular constitution. J. Mol. mannequin. eleven, 457–467 (2005).

  • 121.

    Kuz’min, V. E., Artemenko, A. G. & Muratov, E. N. Hierarchical QSAR know-how in response to the simplex illustration of molecular constitution. J. Comput. support. Mol. Des. 22, 403–421 (2008).

  • 122.

    Isayev, O. et al. substances cartography: representing and mining materials house using structural and digital fingerprints. Chem. Mater. 27, 735–743 (2015).

  • 123.

    Ruggiu, F., Marcou, G., Varnek, A. & Horvath, D. ISIDA property-labelled fragment descriptors. Mol. Inform. 29, 855–868 (2010).

  • 124.

    Blatov, V. A. Voronoi-Dirichlet polyhedra in crystal chemistry: thought and functions. Crystallogr. Rev. 10, 249–318 (2004).

  • 125.

    Carlucci, L., Ciani, G., Proserpio, D. M., Mitina, T. G. & Blatov, V. A. Entangled two-dimensional coordination networks: a accepted survey. Chem. Rev. 114, 7557–7580 (2014).

  • 126.

    Cordero, B. et al. Covalent radii revisited. Dalton Trans. 2832–2838 (2008).

  • 127.

    Pham, T. L. et al. laptop gaining learning of reveals orbital interaction in materials. Sci. Technol. Adv. Mat. 18, 756–765 (2017).

  • 128.

    He, ok., Zhang, X., Ren, S. & solar, J. profound residual discovering for picture cognizance. In 2016 IEEE convention on desktop imaginative and prescient and demo consciousness (CVPR) (eds Bajcsy, R., Li, F.-F., & Tuytelaars, T.) 770–778 (IEEE, Piscataway, NJ, 2016).

  • 129.

    Gori, M., Monfardini, G. & Scarselli, F. a new model for studying in graph domains. Proc. 2005 IEEE Int. Jt. Conf. Neural Netw. 2005. 2, 729–734 (2005).

  • 130.

    Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 20, 61–80 (2009).

  • 131.

    Li, Y., Tarlow, D., Brockschmidt, M. & Zemel, R. Gated graph sequence neural networks. Preprint at arXiv:1511.05493 (2015).

  • 132.

    Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a typical computing device learning framework for molecules and crystals. Chem. Mater. 31, 3564–3572 (2019).

  • 133.

    Schütt, k. T., Arbabzadah, F., Chmiela, S., Müller, okay. R. & Tkatchenko, A. Quantum-chemical insights from profound tensor neural networks. Nat. Commun. eight, 13890 (2017).

  • 134.

    Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. Preprint at arXiv:1609.02907 (2016).

  • 135.

    Kearnes, S., McCloskey, ok., Berndl, M., Pande, V. & Riley, P. Molecular graph convolutions: touching past fingerprints. J. Comput. Aided Mol. Des. 30, 595–608 (2016).

  • 136.

    Bruna, J., Zaremba, W., Szlam, A. & LeCun, Y. Spectral networks and in the neighborhood linked networks on graphs. Preprint at arXiv:1312.6203 (2013).

  • 137.

    Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D. & Kavukcuoglu, k. interaction networks for studying about objects, relations and physics. Preprint at arXiv:1612.00222 (2016).

  • 138.

    Defferrard, M., Bresson, X. & Vandergheynst, P. Convolutional neural networks on graphs with mercurial localized spectral filtering. Preprint at arXiv:1606.09375 (2016).

  • 139.

    Duvenaud, D. k. et al. Convolutional networks on graphs for learning molecular fingerprints. In Advances in Neural information Processing methods 28 (eds. Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M. & Garnett, R.) 2224–2232 (Curran buddies, Inc., crimson Hook, astronomical apple, 2015).

  • one hundred forty.

    Schütt, okay. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A. & Müller, ok.-R. Schnet – a profound getting to know structure for molecules and materials. J. Chem. Phys. 148, 241722 (2018).

  • 141.

    Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proc. thirty fourth international convention on laptop gaining learning of, vol. 70 of Proc. machine getting to know research (eds. Precup, D. & Teh, Y. W.) 1263–1272 (PMLR, exotic conference Centre, Sydney, 2017).

  • 142.

    Jørgensen, P. B., Jacobsen, okay. W. & Schmidt, M. N. Neural message passing with side updates for predicting properties of molecules and substances. Preprint at arXiv:1806.03146 (2018).

  • 143.

    Bartel, C. J. et al. New tolerance factor to prognosticate the stability of perovskite oxides and halides. Preprint at arXiv:1801.07700 (2018).

  • 144.

    Mannodi-Kanakkithodi, A., Pilania, G., Huan, T. D., Lookman, T. & Ramprasad, R. machine researching approach for accelerated design of polymer dielectrics. Sci. Rep. 6, 20952 (2016).

  • 145.

    Perdew, J. P., Burke, ok. & Ernzerhof, M. Generalized gradient approximation made primary. Phys. Rev. Lett. 77, 3865–3868 (1996).

  • 146.

    Fischer, C. C., Tibbetts, ok. J., Morgan, D. & Ceder, G. Predicting crystal structure by route of merging facts mining with quantum mechanics. Nat. Mater. 5, 641–646 (2006).

  • 147.

    Jäger, M. O. J., Morooka, E. V., Canova, F. F., Himanen, L. & Foster, A. S. laptop learning hydrogen adsorption on nanoclusters via structural descriptors. npj Comput. Mater. 4, 37 (2018).

  • 148.

    Himanen, L. et al. Dscribe: library of descriptors for computer discovering in substances science. Preprint at arXiv:1904.08875 (2019).

  • 149.

    Schütt, k. T. et al. SchNetPack: a profound discovering toolbox for atomistic methods. J. Chem. theory Comput. 15, 448–455 (2018).

  • a hundred and fifty.

    Ward, L. et al. Matminer: an open supply toolkit for substances data mining. Comput. Mater. Sci. 152, 60–69 (2018).

  • 151.

    Yao, okay., Herr, J. E., Toth, D., Mckintyre, R. & Parkhill, J. The tensormol-0.1 model chemistry: a neural community augmented with lengthy-range physics. Chem. Sci. 9, 2261–2269 (2018).

  • 152.

    Ong, S. P. et al. Python substances genomics (pymatgen): a robust, open-supply python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

  • 153.

    Boser, B. E., Guyon, I. M. & Vapnik, V. N. A practising algorithm for most advantageous margin classifiers. In Proc. Fifth Annual Workshop on Computational getting to know conception - COLT’92 (ed Haussler, D.) one hundred forty four–152 (ACM Press, long island metropolis, the astronomical apple, 1992).

  • 154.

    Schölkopf, B., Tsuda, k. & Vert, J.-P. (eds.) Kernel methods in Computational Biology (MIT Press, Cambridge, MA, 2004).

  • one hundred fifty five.

    Devroye, L, Györfi, L. & Lugosi, G. in A Probabilistic concept of demo recognition. Stochastic Modelling and utilized haphazard 187–213 (Springer, long island, the astronomical apple, 1996).

  • 156.

    Ueno, T., Rhone, T. D., Hou, Z., Mizoguchi, T. & Tsuda, okay. COMBO: an efficient Bayesian optimization library for materials science. Mater. Des. four, 18–21 (2016).

  • 157.

    Deisenroth, M. P. & Ng, J. W. allotted Gaussian tactics. In ICML’15 Proc. 32nd overseas conference on international convention on desktop studying - extent 37 (eds Bach, F. & Blei, D.) 1481–1490 (ICML, Lille, 2015).

  • 158.

    Santosa, F. & Symes, W. W. Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Stat. Comp. 7, 1307–1330 (1986).

  • 159.

    Tibshirani, R. Regression shrinkage and selection by the disburse of the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996).

  • 160.

    Candès, E. J., Romberg, J. k. & Tao, T. trustworthy sign recovery from incomplete and inaccurate measurements. Commun. simple Appl. Math. fifty nine, 1207–1223 (2006).

  • 161.

    Eldar, Y. C. & Kutyniok, G. (eds.) Compressed Sensing: conception and applications (Cambridge school Press, Cambridge, 2012).

  • 162.

    Ghiringhelli, L. M. et al. studying physical descriptors for materials science by means of compressed sensing. New J. Phys. 19, 023017 (2017).

  • 163.

    Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M. & Ghiringhelli, L. M. SISSO: a compressed-sensing formula for making a altenative on the most suitable low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2, 083802 (2018).

  • 164.

    Fan, J. & Lv, J. confident independence screening for ultrahigh dimensional office area. J. R. Stat. Soc. Ser. B 70, 849–911 (2008).

  • 165.

    Tropp, J. A. & Gilbert, A. C. sign recuperation from random measurements by route of orthogonal matching pursuit. IEEE Trans. Inf. conception 53, 4655–4666 (2007).

  • 166.

    Pati, Y., Rezaiifar, R. & Krishnaprasad, P. Orthogonal matching pursuit: recursive characteristic approximation with purposes to wavelet decomposition. In Proc. twenty seventh Asilomar convention on signals, techniques and computers (ed Singh, A.) forty–forty four (IEEE Comput. Soc. Press, Los Alamitos, CA, 1993).

  • 167.

    Schmidt, M. & Lipson, H. Distilling free-form herbal legal guidelines from experimental facts. Science 324, eighty one–eighty five (2009).

  • 168.

    Pankajakshan, P. et al. computing device gaining learning of and statistical analysis for materials science: equipoise and transferability of fingerprint descriptors and chemical insights. Chem. Mater. 29, 4190–4201 (2017).

  • 169.

    Jain, P., Tewari, A. & Kar, P. On iterative tough thresholding methods for prime-dimensional m-estimation. Adv. Neural Inf. technique. Syst. 27, 685–693 (2014).

  • one hundred seventy.

    Pearson, ok. LIII. On lines and planes of closest wholesome to techniques of points in space. Lond. Edinb. Dublin Philos. mag. J. Sci. 2, 559–572 (1901).

  • 171.

    Jolliffe, I. foremost component evaluation (Springer-Verlag, Berlin, 2002).

  • 172.

    Quinlan, J. Simplifying determination timber. Int. J. Man. Mach. Stud. 27, 221–234 (1987).

  • 173.

    Quinlan, J. R. Induction of altenative bushes. Mach. gain learning of. 1, eighty one–106 (1986).

  • 174.

    Breiman, L. Random forests. Mach. live trained. forty five, 5–32 (2001).

  • 175.

    Geurts, P., Ernst, D. & Wehenkel, L. extremely randomized trees. Mach. live taught. 63, three–forty two (2006).

  • 176.

    Strobl, C., Boulesteix, A.-L., Zeileis, A. & Hothorn, T. warp in random woodland variable significance measures: Illustrations, sources and an answer. BMC Bioinformatics 8, 25 (2007).

  • 177.

    Toyao, T. et al. toward helpful utilization of methane: machine studying prediction of adsorption energies on metal alloys. J. Phys. Chem. C 122, 8315–8326 (2018).

  • 178.

    Shandiz, M. A. & Gauvin, R. application of laptop studying strategies for the prediction of crystal system of cathode substances in lithium-ion batteries. Comput. Mater. Sci. 117, 270–278 (2016).

  • 179.

    Schapire, R. E. The electricity of susceptible learnability. Mach. study. 5, 197–227 (1990).

  • one hundred eighty.

    Friedman, J. H. grasping characteristic approximation: a gradient boosting computer. Ann. Stat. 29, 1189–1232 (2001).

  • 181.

    Mason, L., Baxter, J., Bartlett, P. L. & Frean, M. R. in Advances in Neural suggestions Processing systems 12 (eds. Solla, S. A., Leen, T. k. & Müller, k.) 512–518 (MIT Press, Cambridge, MA, 2000).

  • 182.

    Freund, Y. & Schapire, R. E. a call-theoretic generalization of on line learning and an utility to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).

  • 183.

    Drucker, H. enhancing regressors the usage of boosting innovations. In ICML ’97 Proc. Fourteenth international conference on desktop studying (ed Kaufmann, M.) 107–one hundred fifteen (ICML, Lille, 1997).

  • 184.

    de Jong, M. et al. A statistical getting to know framework for materials science: application to elastic moduli of okay-nary inorganic polycrystalline compounds. Sci. Rep. 6, 34256 (2016).

  • 185.

    Evans, J. D. & Coudert, F.-X. Predicting the mechanical homes of zeolite frameworks by means of computing device learning. Chem. Mater. 29, 7833–7839 (2017).

  • 186.

    Schmidt, J., Chen, L., Botti, S. & Marques, M. A. L. Predicting the steadiness of ternary intermetallics with density useful conception and laptop gaining learning of. J. Chem. Phys. 148, 241728 (2018).

  • 187.

    Kohonen, T. Self-Organizing Maps (Springer, Berlin, 2001).

  • 188.

    Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. A learning algorithm for Boltzmann machines. Cogn. Sci. 9, 147–169 (1985).

  • 189.

    Hochreiter, S. & Schmidhuber, J. lengthy short-term memory. Neural Comput. 9, 1735–1780 (1997).

  • a hundred ninety.

    Carleo, G. & Troyer, M. solving the quantum many-physique issue with synthetic neural networks. Science 355, 602–606 (2017).

  • 191.

    Kolen, J. F. & Kremer, S. C. (eds). in A box pilot to Dynamical Recurrent Networks. Ch. eleven (Wiley-IEEE Press, Hoboken, NJ, 2001).

  • 192.

    Nair, V. & Hinton, G. E. in ICML’10 Proc. twenty seventh international conference on overseas convention on computing device getting to know (eds Fürnkranz, J. & Joachims, T.) 807–814 (Omnipress, Athens, 2010).

  • 193.

    Glorot, X., Bordes, A. & Bengio, Y. profound sparse rectifier neural networks. In Proc. Fourteenth exotic conference on artificial Intelligence and data, vol. 15 of Proc. computing device getting to know research (eds Gordon, G., Dunson, D. & Dudíokay, M.) 315–323 (PMLR, London, 2011).

  • 194.

    Clevert, D.-A., Unterthiner, T. & Hochreiter, S. speedy and remedy profound network studying through exponential linear devices (ELUs). Preprint at arXiv:1511.07289 (2015).

  • 195.

    LeCun, Y. et al. Handwritten digit focus with a lower back-propagation network. Adv. Neural Inf. method. Syst. 2, 396–404 (1990).

  • 196.

    Stanley, okay. O. & Miikkulainen, R. Evolving neural networks via augmenting topologies. Evol. Comput. 10, 99–127 (2002).

  • 197.

    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: an smooth approach to forestall neural networks from overfitting. J. Mach. live trained. Res. 15, 1929–1958 (2014).

  • 198.

    Ioffe, S. & Szegedy, C. Batch normalization: Accelerating profound community working towards by means of cutting back inside covariate shift. Preprint at arXiv:1502.03167 (2015).

  • 199.

    Abadi, M. et al. TensorFlow: enormous-scale desktop gaining learning of on heterogeneous programs. arXiv:1603.04467. https://arxiv.org/abs/1603.04467 (2011).

  • 200.

    Paszke, A. et al. automated differentiation in pytorch. In NIPS 2017 Autodiff Workshop: The route forward for Gradient-based mostly computer researching utility and concepts (2017).

  • 201.

    Plaut, D. C. & Hinton, G. E. discovering sets of filters the disburse of lower back-propagation. Comput. Speech Lang. 2, 35–61 (1987).

  • 202.

    Hinton, G. E. decreasing the dimensionality of facts with neural networks. Science 313, 504–507 (2006).

  • 203.

    Goodfellow, I. et al. Generative adversarial nets. In Advances in Neural assistance Processing systems 27 (eds Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D. & Weinberger, ok. Q.) (Curran pals, Inc., pink Hook, NJ, 2014).

  • 204.

    Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at arXiv:1312.6114 (2013).

  • 205.

    Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. graphic-to-graphic translation with conditional adversarial networks. Preprint at arXiv:1611.07004 (2017).

  • 206.

    Ledig, C. et al. photograph-functional single picture tremendous-resolution the disburse of a generative adversarial community. In 2017 IEEE conference on laptop vision and demo focus (CVPR) (eds Chellappa, R., Zhang, Z. & Hoogs, A.) a hundred and five–114 (IEEE, Piscataway, NJ, 2017).

  • 207.

    Schawinski, ok., Zhang, C., Zhang, H., Fowler, L. & Santhanam, G. okay. Generative adversarial networks accept better facets in astrophysical images of galaxies beyond the deconvolution limit. Mon. now not. R. Astron. Soc. Lett. L110–L114 (2017).

  • 208.

    Paganini, M., de Oliveira, L. & Nachman, B. CaloGAN: Simulating 3D excessive energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks. Phys. Rev. D 97, 014021 (2018).

  • 209.

    Ghahramani, A., Watt, F. M. & Luscombe, N. M. Generative adversarial networks uncover epidermal regulators and prognosticate single mobile perturbations. bioRxiv. https://doi.org/10.1101/262501 (2018).

  • 210.

    Li, X. et al. A profound adversarial studying methodology for designing microstructural material methods. In ASME. exotic Design Engineering Technical Conferences and computer systems and counsel in Engineering conference, volume 2B: 44th Design Automation convention, pp. V02BT03A008 (ASME, long island, astronomical apple, 2018).

  • 211.

    Sanchez-Lengeling, B., Outeiral, C., Guimaraes, G. L. & Aspuru-Guzik, A. Optimizing distributions over molecular house. an aim-reinforced generative adversarial network for inverse-design chemistry (organic). ChemRxiv preprint 5309668/3 (2017).

  • 212.

    Géron, A. fingers-On machine discovering with Scikit-gain learning of and TensorFlow (O’Reilly UK Ltd., Farnham, 2017).

  • 213.

    Goodfellow, I., Bengio, Y. & Courville, A. profound studying (The MIT Press, Cambridge, MA, 2017).

  • 214.

    Murphy, ok. P. laptop gaining learning of: A Probabilistic point of view (MIT Press Ltd, Cambridge, MA, 2012).

  • 215.

    Bishop, C. M. demo consciousness and computer discovering (Springer-Verlag manhattan Inc., long island, astronomical apple, 2006).

  • 216.

    Kelleher, J. D., Mac Namee, B. & D’Arcy, A. Fundamentals of desktop gaining learning of for Predictive information Analytics: Algorithms, worked Examples, and Case studies (MIT Press Ltd, Cambridge, MA, 2015).

  • 217.

    Maddox, J. Crystals from first concepts. Nature 335, 201–201 (1988).

  • 218.

    Freeman, C. M. & Catlow, C. R. A. constitution predictions in inorganic solids. J. Chem. Soc. Chem. Commun. 89–91 (1992).

  • 219.

    van Eijck, B. P. & Kroon, J. constitution predictions permitting a couple of molecule in the uneven unit. Acta Crystallogr. Sect. B 56, 535–542 (2000).

  • 220.

    Pickard, C. J. & needs, R. J. high-power phases of silane. Phys. Rev. Lett. ninety seven, 045504 (2006).

  • 221.

    Pickard, C. J. & wants, R. J. Ab initio random structure browsing. J. Phys. Condens. depend 23, 053201 (2011).

  • 222.

    Pannetier, J., Bassas-Alsina, J., Rodriguez-Carvajal, J. & Caignaert, V. Prediction of crystal structures from crystal chemistry guidelines through simulated annealing. Nature 346, 343–345 (1990).

  • 223.

    Schön, J. C. & Jansen, M. First step towards planning of syntheses in strong-state chemistry: altenative of promising constitution candidates by using global optimization. Angew. Chem. Int. Ed. 35, 1286–1304 (1996).

  • 224.

    Doll, ok., Schön, J. C. & Jansen, M. constitution prediction based on ab initio simulated annealing. J. Phys. Conf. Ser. 117, 012014 (2008).

  • 225.

    Martońáokay, R., Laio, A. & Parrinello, M. Predicting crystal buildings: the Parrinello-Rahman components revisited. Phys. Rev. Lett. ninety, 075503 (2003).

  • 226.

    Goedecker, S. Minima hopping: an effective search system for the world minimal of the potential energy floor of complicated molecular programs. J. Chem. Phys. one hundred twenty, 9911–9917 (2004).

  • 227.

    Bush, T. S., Catlow, C. R. A. & battle, P. D. Evolutionary programming ideas for predicting inorganic crystal buildings. J. Mater. Chem. 5, 1269–1272 (1995).

  • 228.

    Woodley, S. M. & Catlow, R. Crystal structure prediction from first concepts. Nat. Mater. 7, 937–946 (2008).

  • 229.

    Gottwald, D., Kahl, G. & Likos, C. N. Predicting equilibrium constructions in freezing processes. J. Chem. Phys. 122, 204503 (2005).

  • 230.

    Paszkowicz, W. Genetic algorithms, a nature-impressed device: survey of functions in substances science and related fields. Mater. Manuf. system. 24, 174–197 (2009).

  • 231.

    Glass, C. W., Oganov, A. R. & Hansen, N. USPEX–evolutionary crystal constitution prediction. Comput. Phys. Commun. one hundred seventy five, 713–720 (2006).

  • 232.

    Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010).

  • 233.

    Wang, Y., Lv, J., Zhu, L. & Ma, Y. CALYPSO: a route for crystal constitution prediction. Comput. Phys. Commun. 183, 2063–2070 (2012).

  • 234.

    Reilly, A. M. et al. report on the sixth blind examine of biological crystal structure prediction strategies. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 72, 439–459 (2016).

  • 235.

    Zakutayev, A. et al. Experimental synthesis and properties of metastable CuNbN2 and academic extension to other ternary copper nitrides. Chem. Mater. 26, 4970–4977 (2014).

  • 236.

    Shoemaker, D. P. et al. In situ reviews of a platform for metastable inorganic crystal boom and substances discovery. Proc. Natl Acad. Sci. united states 111, 10922–10927 (2014).

  • 237.

    Kim, okay. et al. machine-gaining learning of-accelerated high-throughput materials screening: discovery of novel quaternary Heusler compounds. Phys. Rev. Mater. 2, 123801 (2018).

  • 238.

    Jacobs, R., Mayeshiba, T., Booske, J. & Morgan, D. material discovery and design ideas for good, excessive undertaking perovskite cathodes for solid oxide gas cells. Adv. power Mat. 8, 1702708 (2018).

  • 239.

    Goldschmidt, V. M. Die gesetze der krystallochemie. Die Nat. 14, 477–485 (1926).

  • 240.

    Pilania, G., Balachandran, P. V., Gubernatis, J. E. & Lookman, T. Classification of ABO3 perovskite solids: a computing device researching examine. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. seventy one, 507–513 (2015).

  • 241.

    Balachandran, P. V. et al. Predictions of recent ABO3 perovskite compounds via combining computing device getting to know and density practical concept. Phys. Rev. Mater. 2, 043802 (2018).

  • 242.

    Oliynyk, A. O. et al. excessive-throughput computing device-researching-pushed synthesis of full-Heusler compounds. Chem. Mater. 28, 7324–7331 (2016).

  • 243.

    Villars, P. Pearson’s Crystal records, Crystal structure Database for Inorganic Compounds (ASM foreign, substances Park, OH, 2007).

  • 244.

    Ma, J. et al. Computational investigation of half-Heusler compounds for spintronics purposes. Phys. Rev. B ninety five, 024411 (2017).

  • 245.

    Zhang, X., Yu, L., Zakutayev, A. & Zunger, A. Sorting stable versus unstable hypothetical compounds: The case of multi-purposeful ABX half-Heusler stuffed tetrahedral constructions. Adv. Funct. Mater. 22, 1425–1435 (2012).

  • 246.

    Weiss, k., Khoshgoftaar, T. M. & Wang, D. A survey of transfer getting to know. J. massive statistics three, 9 (2016).

  • 247.

    Hautier, G., Fischer, C. C., Jain, A., Mueller, T. & Ceder, G. finding nature’s lacking ternary oxide compounds the disburse of desktop getting to know and density practical concept. Chem. Mater. 22, 3762–3767 (2010).

  • 248.

    Pettifor, D. A chemical scale for crystal-structure maps. sturdy state Commun. fifty one, 31–34 (1984).

  • 249.

    Pettifor, D. G. The buildings of binary compounds. I. Phenomenological constitution maps. J. Phys. C solid state Phys. 19, 285–313 (1986).

  • 250.

    Pettifor, D. G. structure maps for pseudobinary and ternary phases. Mater. Sci. Tech. four, 675–691 (1988).

  • 251.

    Glawe, H., Sanna, A., Gross, E. ok. U. & Marques, M. A. L. The highest attribute one dimensional intermittent table: a modified pettifor chemical scale from statistics mining. New J. Phys. 18, 093011 (2016).

  • 252.

    Morita, T. Cluster version system of cooperative phenomena and its generalization II. quantum facts. J. Phys. Soc. Jpn. 12, 1060–1063 (1957).

  • 253.

    Sinkov, N. A. & Harynuk, J. J. Cluster decision: a metric for computerized, objective and optimized characteristic selection in chemometric modeling. Talanta 83, 1079–1087 (2011).

  • 254.

    Oliynyk, A. O. et al. Disentangling structural confusion via laptop discovering: structure prediction and polymorphism of equiatomic ternary phases ABC. J. Am. Chem. Soc. 139, 17870–17881 (2017).

  • 255.

    Park, W. B. et al. Classification of crystal structure the disburse of a convolutional neural community. IUCrJ four, 486–494 (2017).

  • 256.

    Obeidat, S. M., Al-Momani, I., Haddad, A. & Yasein, M. B. aggregate of ICP-OES, XRF and XRD concepts for evaluation of a few dental ceramics and their identification the disburse of chemometrics. Spectroscopy 26, 141–149 (2011).

  • 257.

    MITSUI, T. & SATOH, M. decision of ammonium nitrate in dynamite without separation by using multivariate evaluation using X-ray diffractometer. J. Chem. Softw. 4, 33–forty (1998).

  • 258.

    Chen, Z. P. et al. enhancing the sign-to-noise ratio of X-ray diffraction profiles by smoothed foremost factor evaluation. Anal. Chem. seventy seven, 6563–6570 (2005).

  • 259.

    Matos, C. R. S., Xavier, M. J., Barreto, L. S., Costa, N. B. & Gimenez, I. F. essential component analysis of X-ray diffraction patterns to capitulate morphological classification of brucite particles. Anal. Chem. seventy nine, 2091–2095 (2007).

  • 260.

    Tatlier, M. synthetic neural community methods for the prediction of framework crystal structures of zeolites from XRD data. Neural Comput. Appl. 20, 365–371 (2010).

  • 261.

    Agatonovic-Kustrin, S., Wu, V., Rades, T., Saville, D. & Tucker, I. Ranitidine hydrochloride X-ray assay using a neural community. J. Pharm. Biomed. Anal. 22, 985–992 (2000).

  • 262.

    Park, W. B., Shin, N., Hong, okay.-P., Pyo, M. & Sohn, okay.-S. a new paradigm for substances discovery: heuristics-assisted combinatorial chemistry involving parameterization of material novelty. Adv. Funct. Mater. 22, 2258–2266 (2012).

  • 263.

    Park, W. B., Singh, S. P. & Sohn, ok.-S. Discovery of a phosphor for light emitting diode purposes and its structural choice, Ba(Si,Al)5(O,N)8:Eu2+. J. Am. Chem. Soc. 136, 2363–2373 (2014).

  • 264.

    Werner, P. E., Eriksson, L. & Westdahl, M. TREOR, a semi-exhaustive trial-and-error powder indexing software for complete symmetries. J. Appl. Crystallogr. 18, 367–370 (1985).

  • 265.

    LeCun, Y. et al. Backpropagation applied to handwritten zip code awareness. Neural Comput. 1, 541–551 (1989).

  • 266.

    Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-primarily based studying applied to document awareness. Proc. IEEE 86, 2278–2324 (1998).

  • 267.

    Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with profound convolutional neural networks. In Advances in Neural assistance Processing systems 25 (eds Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, k. Q.) 1097–1105 (Curran pals, Inc., red Hook, new york, 2012).

  • 268.

    Ziletti, A., Kumar, D., Scheffler, M. & Ghiringhelli, L. M. Insightful classification of crystal structures the usage of profound learning. Nat. Commun. 9, 2775 (2018).

  • 269.

    Zeiler, M. D. & Fergus, R. Visualizing and realizing convolutional networks. In desktop imaginative and prescient — ECCV 2014 (eds Fleet, D., Pajdla, T., Schiele, B. & Tuytelaars, T.) 818–833 (Springer exotic Publishing, Basel, 2014).

  • 270.

    Bach, S. et al. On pixel-sensible explanations for non-linear classifier selections by using layer-wise relevance propagation. PLoS ONE 10, e0130140 (2015).

  • 271.

    Kumar, D., Menkovski, V., Taylor, G. W. & Wong, A. figuring out anatomy classification via attentive response maps. In 2018 IEEE fifteenth exotic Symposium on Biomedical Imaging (ISBI 2018) (eds Wang, F. et al.) 1130–1133 (IEEE, Piscataway, NJ, 2018).

  • 272.

    Montavon, G., Lapuschkin, S., Binder, A., Samek, W. & Müller, k.-R. Explaining nonlinear classification selections with profound Taylor decomposition. demo Recogn. sixty five, 211–222 (2017).

  • 273.

    Kumar, D., Wong, A. & Taylor, G. W. Explaining the unexplained: a category-better attentive response (CLEAR) approach to knowing profound neural networks. In 2017 IEEE convention on desktop imaginative and prescient and demo cognizance Workshops (CVPRW) 1686–1694 (IEEE, Piscataway, NJ, 2017).

  • 274.

    Dimiduk, D. M., Holm, E. A. & Niezgoda, S. R. perspectives on the occupy an result on of desktop studying, profound learning, and artificial intelligence on substances, procedures, and buildings engineering. Integr. Mater. Manuf. Innov. 7, 157–172 (2018).

  • 275.

    Kalinin, S. V., Sumpter, B. G. & Archibald, R. ok. massive–deep–smart data in imaging for guiding materials design. Nat. Mater. 14, 973–980 (2015).

  • 276.

    Liu, Z. et al. Tomogan: low-dose X-ray tomography with generative adversarial networks. Preprint at arXiv:1902.07582 (2019).

  • 277.

    Liu, R., Agrawal, A., Liao, W., Choudhary, A. & De Graef, M. materials discovery: figuring out polycrystals from huge-scale electron patterns. In 2016 IEEE international conference on huge information (big data) (ed Joshi, J.) 2261–2269 (IEEE, Piscataway, NJ, 2016).

  • 278.

    Wang, B. et al. profound studying for analysing synchrotron records streams. In 2016 long island Scientific records summit (NYSDS) 1–5 (IEEE, 2016).

  • 279.

    DeCost, B. L., Jain, H., Rollett, A. D. & Holm, E. A. laptop vision and computing device gaining learning of for independent characterization of am powder feedstocks. JOM sixty nine, 456–465 (2017).

  • 280.

    Yamashita, T. et al. Crystal constitution prediction accelerated with the aid of Bayesian optimization. Phys. Rev. Mater. 2, 013803 (2018).

  • 281.

    Chapelle, O. & Li, L. An empirical contrast of Thompson sampling. In Advances in Neural tips Processing methods 24 (eds Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F. & Weinberger, k. Q.) 2249–2257 (Curran friends, Inc., purple Hook, the astronomical apple, 2011).

  • 282.

    Li, X. et al. A transfer learning strategy for microstructure reconstruction and structure-property predictions. Sci. Rep. eight, 13461 (2018).

  • 283.

    Zhang, B. et al. computing device discovering approach for prediction of magnetocaloric impact in La(Fe,Si/Al)13-primarily based materials. Chin. Phys. B 27, 067503 (2018).

  • 284.

    Balachandran, P. V., Xue, D. & Lookman, T. structure–Curie temperature relationships in BaTiO3-primarily based ferroelectric perovskites: Anomalous behavior of (Ba,Cd)TiO3 from DFT, statistical inference, and experiments. Phys. Rev. B ninety three, 144111 (2016).

  • 285.

    Sanvito, S. et al. Accelerated discovery of latest magnets in the Heusler alloy household. Sci. Adv. three, e1602241 (2017).

  • 286.

    Zhai, X., Chen, M. & Lu, W. Accelerated peer for perovskite materials with better Curie temperature in accordance with the desktop gaining learning of methods. Comput. Mater. Sci. 151, 41–forty eight (2018).

  • 287.

    Dam, H. C. et al. crucial descriptors and descriptor agencies of Curie temperatures of infrequent-earth transition-metallic binary alloys. J. Phys. Soc. Jpn. 87, 113801 (2018).

  • 288.

    Legrain, F., Carrete, J., van Roekeghem, A., Curtarolo, S. & Mingo, N. How chemical composition on my own can prognosticate vibrational free energies and entropies of solids. Chem. Mater. 29, 6220–6227 (2017).

  • 289.

    Zhuo, Y., Tehrani, A. M. & Brgoch, J. Predicting the troop gaps of inorganic solids via desktop studying. J. Phys. Chem. Lett. 9, 1668–1673 (2018).

  • 290.

    Dey, P. et al. Informatics-aided bandgap engineering for photo voltaic materials. Comput. Mater. Sci. eighty three, 185–195 (2014).

  • 291.

    Lee, J., Seko, A., Shitara, okay., Nakayama, ok. & Tanaka, I. Prediction mannequin of troop cavity for inorganic compounds via mixture of density purposeful conception calculations and computer gaining learning of strategies. Phys. Rev. B 93, 115104 (2016).

  • 292.

    Pilania, G., Gubernatis, J. & Lookman, T. Multi-fidelity desktop studying fashions for accurate bandgap predictions of solids. Comput. Mater. Sci. 129, 156–163 (2017).

  • 293.

    Rajan, A. C. et al. desktop-researching-assisted remedy troop cavity predictions of functionalized MXene. Chem. Mater. 30, 4031–4038 (2018).

  • 294.

    Sparks, T., Kauwe, S. & Welker, T. Extracting capabilities from DFT: experimental troop gap predictions via ensemble studying. ChemRxiv preprint 7236029 (2018).

  • 295.

    Weston, L. & Stampfl, C. laptop gaining learning of the troop gap homes of kesterite I2−II−IV−V4 quaternary compounds for photovoltaics applications. Phys. Rev. Mater. 2, 085407 (2018).

  • 296.

    Gu, T., Lu, W., Bao, X. & Chen, N. the disburse of aid vector regression for the prediction of the troop cavity and melting factor of binary and ternary compound semiconductors. solid state Sci. 8, 129–136 (2006).

  • 297.

    Pilania, G. et al. laptop discovering bandgaps of double perovskites. Sci. Rep. 6, 19375 (2016).

  • 298.

    Setyawan, W., Gaume, R. M., Lam, S., Feigelson, R. S. & Curtarolo, S. high-throughput combinatorial database of digital troop constructions for inorganic scintillator materials. ACS Comb. Sci. 13, 382–390 (2011).

  • 299.

    Lu, S. et al. Accelerated discovery of solid lead-free hybrid biological-inorganic perovskites by the disburse of laptop gaining learning of. Nat. Commun. 9, 3405 (2018).

  • 300.

    Pilania, G. & Liu, X.-Y. computing device getting to know properties of binary wurtzite superlattices. J. Mater. Sci. fifty three, 6652–6664 (2018).

  • 301.

    Cassar, D. R., de Carvalho, A. C. & Zanotto, E. D. Predicting glass transition temperatures the disburse of neural networks. Acta Mater. 159, 249–256 (2018).

  • 302.

    Liu, Y., Zhao, T., Yang, G., Ju, W. & Shi, S. The onset temperature (Tg) of As Se1 glasses transition prediction: a evaluation of topological and regression analysis strategies. Comput. Mater. Sci. 140, 315–321 (2017).

  • 303.

    Zhan, T., Fang, L. & Xu, Y. Prediction of thermal boundary resistance by route of the laptop learning formula. Sci. Rep. 7, 7109 (2017).

  • 304.

    Seko, A. et al. Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and Bayesian optimization. Phys. Rev. Lett. a hundred and fifteen, 205901 (2015).

  • 305.

    van Roekeghem, A., Carrete, J., Oses, C., Curtarolo, S. & Mingo, N. high-throughput computation of thermal conductivity of excessive-temperature sturdy phases: the case of oxide and fluoride perovskites. Phys. Rev. X 6, 041061 (2016).

  • 306.

    Pham, T.-L. et al. researching structure-property relationship in crystalline substances: a resolve of lanthanide–transition steel alloys. J. Chem. Phys. 148, 204106 (2018).

  • 307.

    Pilania, G., Gubernatis, J. E. & Lookman, T. constitution classification and melting temperature prediction in octet AB solids via computer getting to know. Phys. Rev. B 91, 214302 (2015).

  • 308.

    Kikuchi, S., Oda, H., Kiyohara, S. & Mizoguchi, T. Bayesian optimization for effective decision of steel oxide grain boundary structures. Phys. B 532, 24–28 (2018).

  • 309.

    Kiyohara, S., Oda, H., Tsuda, k. & Mizoguchi, T. Acceleration of trustworthy interface constitution looking the disburse of a kriging approach. Jpn. J. Appl. Phys. fifty five, 045502 (2016).

  • 310.

    Kiyohara, S., Oda, H., Miyata, T. & Mizoguchi, T. Prediction of interface structures and energies by the disburse of digital screening. Sci. Adv. 2, e1600746 (2016).

  • 311.

    Zhu, Q., Samanta, A., Li, B., Rudd, R. E. & Frolov, T. Predicting section conduct of grain boundaries with evolutionary search and machine getting to know. Nat. Commun. 9, 467 (2018).

  • 312.

    Rosenbrock, C. W., Homer, E. R., Csányi, G. & Hart, G. L. W. Discovering the pile blocks of atomic methods the usage of computer getting to know: application to grain boundaries. npj Comput. Mater. 3, 29 (2017).

  • 313.

    Furmanchuk, A. et al. Prediction of Seebeck coefficient for compounds devoid of restriction to fastened stoichiometry: a computing device studying approach. J. Comput. Chem. 39, 191–202 (2017).

  • 314.

    Abdellahi, M., Bahmanpour, M. & Bahmanpour, M. Modeling Seebeck coefficient of Ca3−xMxCo4O9 (M = Sr, Pr, Ga, Ca, Ba, La, Ag) thermoelectric ceramics. Ceram. Int. 41, 345–352 (2015).

  • 315.

    Carrete, J., Mingo, N., Wang, S. & Curtarolo, S. Nanograined half-Heusler semiconductors as superior thermoelectrics: an ab initio excessive-throughput statistical analyze. Adv. Funct. Mater. 24, 7427–7432 (2014).

  • 316.

    Tehrani, A. M. et al. desktop studying directed search for ultraincompressible, superhard materials. J. Am. Chem. Soc. 140, 9844–9853 (2018).

  • 317.

    Yeo, B. C., Kim, D., Kim, C. & Han, S. S. pattern researching digital density of states. Preprint at arXiv:1808.03383 (2018).

  • 318.

    Broderick, S. R., Aourag, H. & Rajan, ok. Classification of oxide compounds via statistics-mining density of states spectra. J. Am. Ceram. Soc. ninety four, 2974–2980 (2011).

  • 319.

    Meredig, B. & Wolverton, C. Dissolving the intermittent desk in cubic zirconia: facts mining to find chemical trends. Chem. Mater. 26, 1985–1991 (2014).

  • 320.

    Zhang, Y. & Kim, E.-A. Quantum loop topography for computer discovering. Phys. Rev. Lett. 118, 216401 (2017).

  • 321.

    Zhang, P., Shen, H. & Zhai, H. machine discovering topological invariants with neural networks. Phys. Rev. Lett. a hundred and twenty, 066401 (2018).

  • 322.

    Deng, D.-L., Li, X. & Sarma, S. D. laptop getting to know topological states. Phys. Rev. B 96, 195145 (2017).

  • 323.

    solar, N., Yi, J., Zhang, P., Shen, H. & Zhai, H. profound gaining learning of topological invariants of troop insulators. Phys. Rev. B ninety eight, 085402 (2018).

  • 324.

    seaside, M. J. S., Golubeva, A. & Melko, R. G. laptop learning vortices at the Kosterlitz-Thouless transition. Phys. Rev. B 97, 045207 (2018).

  • 325.

    Pilozzi, L., Farrelly, F. A., Marcucci, G. & Conti, C. laptop learning inverse difficulty for topological photonics. Commun. Phys. 1, 57 (2018).

  • 326.

    Carrasquilla, J. & Melko, R. G. computing device discovering phases of live counted. Nat. Phys. 13, 431–434 (2017).

  • 327.

    Owolabi, T. O., Akande, okay. O. & Olatunji, S. O. Prediction of superconducting transition temperatures for Fe-based superconductors using succor vector computing device. Adv. Phys. Theor. Appl. 35, 12–26 (2014).

  • 328.

    Owolabi, T. O., Akande, ok. O. & Olatunji, S. O. Estimation of superconducting transition temperature tc for superconductors of the doped MgB2 equipment from the crystal lattice parameters using succor vector regression. J. Supercond. Nov. Magn. 28, seventy five–81 (2014).

  • 329.

    Ling, J., Hutchinson, M., Antono, E., Paradiso, S. & Meredig, B. excessive-dimensional substances and manner optimization the usage of statistics-driven experimental design with smartly-calibrated suspicion estimates. Integr. Mater. Manuf. Innov. 6, 207–217 (2017).

  • 330.

    Sendek, A. D. et al. computer studying-assisted discovery of sturdy Li-ion conducting materials. Chem. Mater. 31, 342–352 (2019).

  • 331.

    Waag, W., Fleischer, C. & Sauer, D. U. crucial evaluate of the strategies for monitoring of lithium-ion batteries in electric and hybrid motors. J. vigour Sources 258, 321–339 (2014).

  • 332.

    Tran, F. & Blaha, P. remedy troop gaps of semiconductors and insulators with a semilocal exchange-correlation knowledge. Phys. Rev. Lett. 102, 226401 (2009).

  • 333.

    sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly restricted and correctly normed semilocal density functional. Phys. Rev. Lett. one hundred fifteen, 036402 (2015).

  • 334.

    Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals in accordance with a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

  • 335.

    Snyder, G. J. & Toberer, E. S. complicated thermoelectric substances. Mater. sustain. energy a hundred and one–110 (2010).

  • 336.

    Cahill, D. G., Watson, S. k. & Pohl, R. O. reduce confine to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).

  • 337.

    Yan, J. et al. fabric descriptors for predicting thermoelectric performance. energy Environ. Sci. 8, 983–994 (2015).

  • 338.

    Liu, A. Y. & Cohen, M. L. Prediction of latest low compressibility solids. Science 245, 841–842 (1989).

  • 339.

    Gilman, J. J. digital groundwork of the strength of substances (Cambridge institution Press, Cambridge, 2001).

  • 340.

    Kaner, R. B. materials science: designing superhard substances. Science 308, 1268–1269 (2005).

  • 341.

    Kramer, G. J., Farragher, N. P., van Beest, B. W. H. & van Santen, R. A. Interatomic drive fields for silicas, aluminophosphates, and zeolites: derivation in response to ab initio calculations. Phys. Rev. B forty three, 5068–5080 (1991).

  • 342.

    Cohen, M. L. conception of bulk moduli of tough solids. Mater. Sci. Eng. A one zero five-106, 11–18 (1988).

  • 343.

    Xu, B., Wang, Q. & Tian, Y. Bulk modulus for polar covalent crystals. Sci. Rep. 3, 3068 (2013).

  • 344.

    Cohen, M. L. Calculation of bulk moduli of diamond and zinc-blende solids. Phys. Rev. B 32, 7988–7991 (1985).

  • 345.

    Lam, P. okay., Cohen, M. L. & Martinez, G. Analytic relation between bulk moduli and lattice constants. Phys. Rev. B 35, 9190–9194 (1987).

  • 346.

    Loader, C. local Regression and haphazard (Springer-Verlag, Berlin, 1999).

  • 347.

    Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A sixty five, 349–354 (1952).

  • 348.

    Sastre, G. & Gale, J. D. Derivation of an interatomic abilities for germanium- and silicon-containing zeolites and its utility to the examine of the constructions of octadecasil, ASU-7, and ASU-9 substances. Chem. Mater. 15, 1788–1796 (2003).

  • 349.

    Tsuneyuki, S., Tsukada, M., Aoki, H. & Matsui, Y. First-principles interatomic competencies of silica utilized to molecular dynamics. Phys. Rev. Lett. 61, 869–872 (1988).

  • 350.

    van Beest, B. W. H., Kramer, G. J. & van Santen, R. A. drive fields for silicas and aluminophosphates in line with ab initio calculations. Phys. Rev. Lett. 64, 1955–1958 (1990).

  • 351.

    Gale, J. D. Analytical free power minimization of silica polymorphs. J. Phys. Chem. B 102, 5423–5431 (1998).

  • 352.

    Sanders, M. J., Leslie, M. & Catlow, C. R. A. Interatomic potentials for SiO2. J. Chem. Soc. Chem. Commun. 1271–1273 (1984).

  • 353.

    Siddorn, M., Coudert, F.-X., Evans, ok. E. & Marmier, A. a scientific typology for negative Poisson’s ratio substances and the prediction of comprehensive auxeticity in simple silica zeolite JST. Phys. Chem. Chem. Phys. 17, 17927–17933 (2015).

  • 354.

    Birch, F. Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947).

  • 355.

    Murnaghan, F. D. The compressibility of media beneath strict pressures. Proc. Natl Acad. Sci. country 30, 244–247 (1944).

  • 356.

    Wang, J. & Zhang, S.-C. Topological states of condensed live counted. Nat. Mater. 16, 1062–1067 (2017).

  • 357.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. eighty two, 3045–3067 (2010).

  • 358.

    Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

  • 359.

    Aubry, S. & André, G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Isr. Phys. Soc. three, 18 (1980).

  • 360.

    Harper, P. G. The common movement of conduction electrons in a uniform magnetic field, with software to the diamagnetism of metals. Proc. Phys. Soc. Sect. A sixty eight, 879–892 (1955).

  • 361.

    Bednorz, J. G. & Müller, k. A. feasible tall Tc superconductivity in the Ba–La–Cu–O device. Z. Phys. B Condens. depend 64, 189–193 (1986).

  • 362.

    Eliashberg, G. M. Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP 11:three, 7354388 (1960).

  • 363.

    Lüders, M. et al. Ab initio conception of superconductivity. I. Density practical formalism and approximate functionals. Phys. Rev. B seventy two, 024545 (2005).

  • 364.

    Marques, M. A. L. et al. Ab initio conception of superconductivity. II. utility to elemental metals. Phys. Rev. B seventy two, 024546 (2005).

  • 365.

    Rabe, ok. M., Phillips, J. C., Villars, P. & Brown, I. D. global multinary structural chemistry of sturdy quasicrystals, excessive-Tc ferroelectrics, and excessive-Tc superconductors. Phys. Rev. B forty five, 7650–7676 (1992).

  • 366.

    Villars, P. & Phillips, J. Quantum structural diagrams and excessive-Tc superconductivity. Phys. Rev. B 37, 2345–2348 (1988).

  • 367.

    Klintenberg, M. & Eriksson, O. feasible excessive-temperature superconductors predicted from electronic constitution and data-filtering algorithms. Comput. Mater. Sci. sixty seven, 282–286 (2013).

  • 368.

    Norman, M. R. substances design for new superconductors. Rep. Prog. Phys. seventy nine, 074502 (2016).

  • 369.

    Kohn, W. & Luttinger, J. M. New mechanism for superconductivity. Phys. Rev. Lett. 15, 524–526 (1965).

  • 370.

    Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A time-honored-aim desktop getting to know framework for predicting residences of inorganic substances. npj Comput. Mater. 2, 16028 (2016).

  • 371.

    Matthias, B. T. Empirical relation between superconductivity and the variety of valence electrons per atom. Phys. Rev. 97, 74–seventy six (1955).

  • 372.

    Ziatdinov, M. et al. profound statistics mining in a true space: separation of intertwined digital responses in a lightly doped BaFe2As2. Nanotechnology 27, 475706 (2016).

  • 373.

    Nguyen, A.-T., Reiter, S. & Rigo, P. A evaluate on simulation-based optimization methods applied to pile performance analysis. Appl. Energ. 113, 1043–1058 (2014).

  • 374.

    Forrester, A. I. & Keane, A. J. contemporary advances in surrogate-primarily based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009).

  • 375.

    Balachandran, P. V., Xue, D., Theiler, J., Hogden, J. & Lookman, T. Adaptive thoughts for substances design using uncertainties. Sci. Rep. 6, 19660 (2016).

  • 376.

    Schneider, G. et al. Voyages to the (un)commonplace: adaptive design of bioactive compounds. trends Biotechnol. 27, 18–26 (2009).

  • 377.

    Bajorath, J. et al. Navigating structure–activity landscapes. Drug Discov. these days 14, 698–705 (2009).

  • 378.

    Johnson, S. R. The drawback with QSAR (or how i realized to discontinue worrying and embody fallacy). J. Chem. Inf. mannequin. 48, 25–26 (2008).

  • 379.

    Maggiora, G. M. On outliers and activity cliffs – why QSAR often disappoints. J. Chem. Inf. model. 46, 1535–1535 (2006).

  • 380.

    Rasmussen, C. E. & Williams C. okay. I. Gaussian methods for computer getting to know (MIT Press Ltd, Cambridge, MA, 2005).

  • 381.

    Yamawaki, M., Ohnishi, M., Ju, S. & Shiomi, J. Multifunctional structural design of graphene thermoelectrics by using Bayesian optimization. Sci. Adv. four, eaar4192 (2018).

  • 382.

    Bassman, L. et al. lively gaining learning of for accelerated design of layered materials. npj Comput. Mater. four, seventy four (2018).

  • 383.

    Rouet-Leduc, B., Barros, k., Lookman, T. & Humphreys, C. J. Optimisation of GaN LEDs and the discount of effectivity condescend the usage of lively desktop discovering. Sci. Rep. 6, 24862 (2016).

  • 384.

    Xue, D. et al. Accelerated search for materials with centered properties by route of adaptive design. Nat. Commun. 7, 11241 (2016).

  • 385.

    Xue, D. et al. Accelerated seek BaTiO3-based mostly piezoelectrics with plumb morphotropic fragment boundary using Bayesian researching. Proc. Natl Acad. Sci. us of a 113, 13301–13306 (2016).

  • 386.

    Shan, S. & Wang, G. G. Survey of modeling and optimization ideas to unravel excessive-dimensional design problems with computationally-expensive black-box functions. Struct. Multidiscip. Optim. 41, 219–241 (2009).

  • 387.

    Jones, D. R., Schonlau, M. & Welch, W. J. effective international optimization of expensive black-field features. J. Glob. Optim. 13, 455–492 (1998).

  • 388.

    Frazier, P., Powell, W. & Dayanik, S. The abilities-gradient coverage for correlated usual beliefs. INFORMS J. Comput. 21, 599–613 (2009).

  • 389.

    Balachandran, P. V. et al. in substances Discovery and Design 59–seventy nine (Springer exotic Publishing, Basel, 2018).

  • 390.

    Hutchinson, M., Paradiso, S. & Ward, L. Citrine Informatics Lolo https://citrine.io/ (2016).

  • 391.

    Efron, B. mannequin altenative Estimation and Bootstrap Smoothing (Division of Biostatistics, Stanford tuition, Stanford, CA, 2012).

  • 392.

    Wager, S., Hastie, T. & Efron, B. assurance intervals for random forests: the jackknife and the infinitesimal jackknife. J. Mach. live trained. Res. 15, 1625–1651 (2014).

  • 393.

    Lindström, D. assessment of a surrogate based formula for global optimization. Int. J. Comput. Electr. Autom. manage Inf. Eng. 9, 1636–1642 (2015).

  • 394.

    Powell, W. B. & Ryzhov, I. O. premier studying (John Wiley & Sons, Inc., Hoboken, NJ, 2012).

  • 395.

    Browne, C. B. et al. A survey of Monte Carlo tree search strategies. IEEE Trans. Comp. Intel. AI four, 1–forty three (2012).

  • 396.

    Dieb, T. M. et al. MDTS: computerized complicated substances design the disburse of Monte Carlo tree search. Sci. Technol. Adv. Mat. 18, 498–503 (2017).

  • 397.

    Kiyohara, S. & Mizoguchi, T. shopping the stable segregation configuration at the grain boundary by using a Monte Carlo tree search. J. Chem. Phys. 148, 241741 (2018).

  • 398.

    Dieb, T. M., Hou, Z. & Tsuda, k. structure prediction of boron-doped graphene by computing device gaining learning of. J. Chem. Phys. 148, 241716 (2018).

  • 399.

    Dieb, T. M. & Tsuda, k. in Nanoinformatics sixty five–74 (Springer Singapore, Singapore, 2018).

  • 400.

    Sawada, R., Iwasaki, Y. & Ishida, M. Boosting cloth modeling using video game tree search. Phys. Rev. Mat. 2, 103802 (2018).

  • 401.

    Okamoto, Y. making disburse of Bayesian strategy to combinatorial problem in chemistry. J. Phys. Chem. A 121, 3299–3304 (2017).

  • 402.

    Dehghannasiri, R. et al. most trustworthy experimental design for substances discovery. Comput. Mater. Sci. 129, 311–322 (2017).

  • 403.

    Yoon, B.-J., Qian, X. & Dougherty, E. R. Quantifying the train can charge of suspicion in advanced dynamical systems. IEEE Trans. signal Proces. sixty one, 2256–2266 (2013).

  • 404.

    Wang, Y., Reyes, okay. G., Brown, ok. A., Mirkin, C. A. & Powell, W. B. Nested-batch-mode researching and stochastic optimization with an application to sequential multi-stage checking out in materials science. SIAM J. Sci. Comput. 37, B361–B381 (2015).

  • 405.

    Wagner, T., Emmerich, M., Deutz, A. & Ponweiser, W. On anticipated-improvement standards for mannequin-based multi-aim optimization. In Parallel issue solving from Nature, (eds Schaefer, R., Cotta, C., Kolodziej, J. & Rudolph, G.) PPSN XI 718–727 (Springer, Berlin, Heidelberg, 2010).

  • 406.

    Emmerich, M. T. M., Deutz, A. H. & Klinkenberg, J. W. Hypervolume-primarily based anticipated growth: monotonicity homes and exact computation. In 2011 IEEE Congress of Evolutionary Computation (CEC) 2147–2154 (IEEE, Piscataway, NJ, 2011).

  • 407.

    Solomou, A. et al. Multi-aim Bayesian materials discovery: utility on the discovery of precipitation bolstered NiTi shape memory alloys via micromechanical modeling. Mater. Des. one hundred sixty, 810–827 (2018).

  • 408.

    Talapatra, A. et al. independent efficient scan design for substances discovery with Bayesian model averaging. Phys. Rev. Mat. 2, 113803 (2018).

  • 409.

    Gopakumar, A. M., Balachandran, P. V., Xue, D., Gubernatis, J. E. & Lookman, T. Multi-objective optimization for substances discovery by the disburse of adaptive design. Sci. Rep. eight, 3738 (2018).

  • 410.

    Johnson, D. D. in Informatics for substances Science and Engineering 349–364 (Elsevier, Amsterdam, 2013).

  • 411.

    Tersoff, J. New empirical model for the structural residences of silicon. Phys. Rev. Lett. fifty six, 632–635 (1986).

  • 412.

    Stillinger, F. H. & Weber, T. A. laptop simulation of autochthonous order in condensed phases of silicon. Phys. Rev. B 31, 5262–5271 (1985).

  • 413.

    van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive oblige realm for hydrocarbons. J. Phys. Chem. A one hundred and five, 9396–9409 (2001).

  • 414.

    MacKerell, A. D. et al. All-atom empirical talents for molecular modeling and dynamics reviews of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

  • 415.

    Daw, M. S. & Baskes, M. I. Embedded-atom formulation: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984).

  • 416.

    Daw, M. S., Foiles, S. M. & Baskes, M. I. The embedded-atom formulation: a review of conception and applications. Mater. Sci. Rep. 9, 251–310 (1993).

  • 417.

    Becker, C. A., Tavazza, F., Trautt, Z. T. & de Macedo, R. A. B. considerations for identifying and the disburse of drive fields and interatomic potentials in materials science and engineering. Curr. Opin. sturdy state Mater. Sci. 17, 277–283 (2013).

  • 418.

    Seifert, G. & Joswig, J.-O. Density-useful taut binding – an approximate density-purposeful conception formulation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 456–465 (2012).

  • 419.

    Koskinen, P. & Mäkinen, V. Density-functional tight-binding for newbies. Comput. Mater. Sci. forty seven, 237–253 (2009).

  • 420.

    Porezag, D., Frauenheim, T., okayöhler, T., Seifert, G. & Kaschner, R. construction of tight-binding-like potentials on the groundwork of density-useful conception: application to carbon. Phys. Rev. B fifty one, 12947–12957 (1995).

  • 421.

    Sumpter, B. G. & Noid, D. W. potential power surfaces for macromolecules. a neural network method. Chem. Phys. Lett. 192, 455–462 (1992).

  • 422.

    clean, T. B., Brown, S. D., Calhoun, A. W. & Doren, D. J. Neural network fashions of expertise power surfaces. J. Chem. Phys. 103, 4129–4137 (1995).

  • 423.

    Handley, C. M. & Popelier, P. L. A. learning power surfaces fitted through artificial neural networks. J. Phys. Chem. A 114, 3371–3383 (2010).

  • 424.

    Behler, J. Atom-situated symmetry features for developing high-dimensional neural community potentials. J. Chem. Phys. 134, 074106 (2011).

  • 425.

    Behler, J. First principles neural network potentials for reactive simulations of huge molecular and condensed systems. Angew. Chem. Int. Ed. fifty six, 12828–12840 (2017).

  • 426.

    Khaliullin, R. Z., Eshet, H., okayühne, T. D., Behler, J. & Parrinello, M. Nucleation mechanism for the direct graphite-to-diamond section transition. Nat. Mater. 10, 693–697 (2011).

  • 427.

    Eshet, H., Khaliullin, R. Z., okayühne, T. D., Behler, J. & Parrinello, M. Ab initio first-class neural-community expertise for sodium. Phys. Rev. B 81, 184107 (2010).

  • 428.

    Artrith, N., Morawietz, T. & Behler, J. excessive-dimensional neural-community potentials for multicomponent programs: purposes to zinc oxide. Phys. Rev. B eighty three, 153101 (2011).

  • 429.

    Sosso, G. C., Miceli, G., Caravati, S., Behler, J. & Bernasconi, M. Neural network interatomic talents for the facet change material GeTe. Phys. Rev. B 85, 174103 (2012).

  • 430.

    Artrith, N. & Behler, J. excessive-dimensional neural network potentials for steel surfaces: a prototype examine for copper. Phys. Rev. B 85, 045439 (2012).

  • 431.

    Boes, J. R., Groenenboom, M. C., Keith, J. A. & Kitchin, J. R. Neural community and ReaxFF assessment for Au homes. Int. J. Quantum Chem. 116, 979–987 (2016).

  • 432.

    Kobayashi, R., Giofré, D., Junge, T., Ceriotti, M. & Curtin, W. A. Neural community capabilities for Al-Mg-Si alloys. Phys. Rev. Mater. 1, 053604 (2017).

  • 433.

    Ghasemi, S. A., Hofstetter, A., Saha, S. & Goedecker, S. Interatomic potentials for ionic programs with density functional accuracy based on charge densities acquired via a neural network. Phys. Rev. B ninety two, 045131 (2015).

  • 434.

    Faraji, S. et al. tall accuracy and transferability of a neural network expertise via charge equilibration for calcium fluoride. Phys. Rev. B ninety five, 104105 (2017).

  • 435.

    Witkoskie, J. B. & Doren, D. J. Neural network fashions of capabilities power surfaces: prototypical examples. J. Chem. conception Comput. 1, 14–23 (2005).

  • 436.

    Pukrittayakamee, A., Hagan, M., Raff, L., Bukkapatnam, S. & Komanduri, R. in clever Engineering techniques via artificial Neural Networks: sapient methods Engineering Computational Intelligence in Architecting complicated Engineering methods, Vol. 17, 469–474 (ASME Press, ny, astronomical apple, 2007).

  • 437.

    Pukrittayakamee, A. et al. Simultaneous fitting of a possible-power surface and its corresponding oblige fields the usage of feedforward neural networks. J. Chem. Phys. one hundred thirty, 134101 (2009).

  • 438.

    Hajinazar, S., Shao, J. & Kolmogorov, A. N. Stratified pile of neural community based mostly interatomic fashions for multicomponent substances. Phys. Rev. B ninety five, 014114 (2017).

  • 439.

    Artrith, N., city, A. & Ceder, G. constructing first-principles section diagrams of amorphous LixSi using desktop-learning-assisted sampling with an evolutionary algorithm. J. Chem. Phys. 148, 241711 (2018).

  • 440.

    Thompson, A., Swiler, L., Trott, C., Foiles, S. & Tucker, G. Spectral neighbor evaluation formula for computerized technology of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316–330 (2015).

  • 441.

    Chen, C. et al. remedy drive container for molybdenum with the aid of desktop discovering huge materials records. Phys. Rev. Mater. 1, 043603 (2017).

  • 442.

    wood, M. A. & Thompson, A. P. Extending the accuracy of the SNAP interatomic capabilities form. J. Chem. Phys. 148, 241721 (2018).

  • 443.

    Li, X.-G. et al. Quantum-accurate spectral neighbor analysis talents fashions for Ni–Mo binary alloys and fcc metals. Phys. Rev. B 98, 094104 (2018).

  • 444.

    Zou, H. & Hastie, T. Regularization and variable preference by the disburse of the elastic web. J. Roy. Stat. Soc. Ser. B sixty seven, 301–320 (2005).

  • 445.

    Hastie, T, Tibshirani, R. & Friedman, J. The points of Statistical researching (Springer, long island, the astronomical apple, 2009).

  • 446.

    Seko, A., Takahashi, A. & Tanaka, I. First-concepts interatomic potentials for ten elemental metals via compressed sensing. Phys. Rev. B 92, 054113 (2015).

  • 447.

    Li, Z., Kermode, J. R. & Vita, A. D. Molecular dynamics with on-the-fly computing device studying of quantum-mechanical forces. Phys. Rev. Lett. 114, 096405 (2015).

  • 448.

    Vita, A. D. & motor vehicle, R. A novel scheme for remedy MD simulations of significant systems. MRS Proc. 491, 473 (1997).

  • 449.

    Csányi, G., Albaret, T., Payne, M. C. & Vita, A. D. gain learning of on the fly: a hybrid classical and quantum-mechanical molecular dynamics simulation. Phys. Rev. Lett. ninety three, 175503 (2004).

  • 450.

    Kruglov, I., Sergeev, O., Yanilkin, A. & Oganov, A. R. power-free laptop discovering drive box for aluminum. Sci. Rep. 7, 8512 (2017).

  • 451.

    Glielmo, A., Sollich, P. & Vita, A. D. remedy interatomic drive fields via machine getting to know with covariant kernels. Phys. Rev. B 95, 214302 (2017).

  • 452.

    Evgeniou, T., Micchelli, C. A. & Pontil, M. discovering multiple initiatives with kernel strategies. J. Mach. learn. Res. 6, 615–637 (2005).

  • 453.

    Álvarez, M. A., Rosasco, L. & Lawrence, N. D. Kernels for vector-valued services: a assessment. discovered. traits Mach. learn. four, 195–266 (2012).

  • 454.

    Glielmo, A., Zeni, C. & Vita, A. D. efficient nonparametric n-physique drive fields from computer studying. Phys. Rev. B ninety seven, 184307 (2018).

  • 455.

    Szlachta, W. J., Bartók, A. P. & Csányi, G. Accuracy and transferability of Gaussian approximation skills models for tungsten. Phys. Rev. B ninety, 104108 (2014).

  • 456.

    Deringer, V. L. & Csányi, G. desktop gaining learning of based mostly interatomic competencies for amorphous carbon. Phys. Rev. B 95, 094203 (2017).

  • 457.

    De, S., Bartók, A. P., Csányi, G. & Ceriotti, M. evaluating molecules and solids throughout structural and alchemical area. Phys. Chem. Chem. Phys. 18, 13754–13769 (2016).

  • 458.

    Dragoni, D., Daff, T. D., Csányi, G. & Marzari, N. attaining DFT accuracy with a computer-learning interatomic competencies: thermomechanics and defects in bcc ferromagnetic iron. Phys. Rev. Mater. 2, 013808 (2018).

  • 459.

    Vtek, V. Intrinsic stacking faults in body-centred cubic crystals. Philos. magazine. 18, 773–786 (1968).

  • 460.

    Deringer, V. L., Pickard, C. J. & Csányi, G. information-driven researching of complete and autochthonous energies in elemental boron. Phys. Rev. Lett. a hundred and twenty, 156001 (2018).

  • 461.

    Rowe, P., Csányi, G., Alfè, D. & Michaelides, A. pile of a laptop researching potential for graphene. Phys. Rev. B 97, 054303 (2018).

  • 462.

    Kamath, A., Vargas-Hernández, R. A., Krems, R. V., Carrington, T. & Manzhos, S. Neural networks vs Gaussian manner regression for representing competencies energy surfaces: a comparative examine of proper exceptional and vibrational spectrum accuracy. J. Chem. Phys. 148, 241702 (2018).

  • 463.

    Schmitz, G. & Christiansen, O. Gaussian system regression to accelerate geometry optimizations counting on numerical differentiation. J. Chem. Phys. 148, 241704 (2018).

  • 464.

    Jacobsen, T., Jørgensen, M. & Hammer, B. On-the-fly computer researching of atomic learning in density practical conception constitution optimization. Phys. Rev. Lett. 120, 026102 (2018).

  • 465.

    Oganov, A. R. & Valle, M. a route to quantify energy landscapes of solids. J. Chem. Phys. a hundred thirty, 104504 (2009).

  • 466.

    Han, J., Zhang, L., automobile, R. & Weinan, E. profound competencies: a intimate representation of a many-body potential power floor. Commun. Comput. Phys. 23, 629 (2018).

  • 467.

    Zhang, L., Han, J., Wang, H., car, R. & E, W. profound potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. a hundred and twenty, 143001 (2018).

  • 468.

    Tozer, D. J., Ingamells, V. E. & handy, N. C. alternate-correlation potentials. J. Chem. Phys. a hundred and five, 9200–9213 (1996).

  • 469.

    Murray, C. W., easy, N. C. & Laming, G. J. Quadrature schemes for integrals of density purposeful theory. Mol. Phys. 78, 997–1014 (1993).

  • 470.

    Snyder, J. C., Rupp, M., Hansen, ok., Müller, ok.-R. & Burke, okay. finding density functionals with machine gaining learning of. Phys. Rev. Lett. 108, 253002 (2012).

  • 471.

    Hairer, E, Nørsett, S. P. & Wanner, G. solving regular Differential Equations I: Nonsitff issues (Springer, Berlin, 1993).

  • 472.

    Snyder, J. C. et al. Orbital-free bond breaking by means of computer gaining learning of. J. Chem. Phys. 139, 224104 (2013).

  • 473.

    Brockherde, F. et al. Bypassing the Kohn-Sham equations with computing device gaining learning of. Nat. Commun. eight, 872 (2017).

  • 474.

    Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. pile and checking out of a accepted amber oblige container. J. Comput. Chem. 25, 1157–1174 (2004).

  • 475.

    Liu, Q. et al. improving the efficiency of lengthy-range-corrected exchange-correlation functional with an embedded neural community. J. Phys. Chem. A 121, 7273–7281 (2017).

  • 476.

    Becke, A. D. Density-practical exchange-power approximation with remedy asymptotic conduct. Phys. Rev. A 38, 3098–3100 (1988).

  • 477.

    Leininger, T., Stoll, H., Werner, H.-J. & Savin, A. Combining lengthy-latitude configuration interplay with short-latitude density functionals. Chem. Phys. Lett. 275, 151–a hundred and sixty (1997).

  • 478.

    Nagai, R., Akashi, R., Sasaki, S. & Tsuneyuki, S. Neural-network Kohn-Sham trade-correlation expertise and its out-of-training transferability. J. Chem. Phys. 148, 241737 (2018).

  • 479.

    Kadantsev, E. S. & Stott, M. J. Variational formulation for inverting the Kohn-Sham process. Phys. Rev. A sixty nine, 012502 (2004).

  • 480.

    Foulkes, W. M. C. & Haydock, R. Tight-binding fashions and density-functional concept. Phys. Rev. B 39, 12520–12536 (1989).

  • 481.

    Vellido, A., Martn-Guerrero, J. D. & Lisboa, P. J. Making laptop getting to know models interpretable. In 20th European Symposium on synthetic Neural Networks, Computational Intelligence and laptop discovering (ESANN) 163–172 (Bruges (Belgium), 2012). purchasable from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

  • 482.

    Lipton, Z. C. The mythos of model interpretability. Queue 16, 30:31–30:57 (2018).

  • 483.

    Lipton, Z. C., Kale, D. C. & Wetzel, R. Modeling lacking statistics in clinical time collection with RNNs. In Proc. laptop gaining learning of for Healthcare 2016 (eds Doshi-Velez, F., Fackler, J., Kale, D., Wallace, B. & Wiens, J.) 253–270 (court cases of computer learning research, dinky ones's health hub LA, l. a., CA, united states, 2016).

  • 484.

    Kitchin, J. R., Nørskov, J. okay., Barteau, M. A. & Chen, J. G. position of strain and ligand results within the amendment of the electronic and chemical houses of bimetallic surfaces. Phys. Rev. Lett. ninety three, 156801 (2004).

  • 485.

    Ma, X., Li, Z., Achenie, L. E. k. & Xin, H. computing device-learning-augmented chemisorption model for CO2 electroreduction leavening screening. J. Phys. Chem. Lett. 6, 3528–3533 (2015).

  • 486.

    Xie, T. & Grossman, J. C. Hierarchical visualization of materials house with graph convolutional neural networks. J. Chem. Phys. 149, 174111 (2018).

  • 487.

    Alexander, J. W. Topological invariants of knots and links. Trans. Am. Math. Soc. 30, 275–275 (1928).

  • 488.

    Chern, S.-S. credit classes of Hermitian manifolds. Ann. Math. 47, eighty five (1946).

  • 489.

    Smith, J. S. et al. Outsmarting quantum chemistry through transfer getting to know. ChemRxiv preprint 6744440 (2018).

  • 490.

    Ramakrishnan, R., Dral, P. O., Rupp, M. & von Lilienfeld, O. A. Quantum chemistry constructions and properties of 134 kilo molecules. Sci. records 1, 140022 (2014).

  • 491.

    Ruddigkeit, L., van Deursen, R., Blum, L. C. & Reymond, J.-L. Enumeration of 166 billion biological wee molecules in the chemical universe database GDB-17. J. Chem. Inf. model. 52, 2864–2875 (2012).

  • 492.

    Ramakrishnan, R., Hartmann, M., Tapavicza, E. & von Lilienfeld, O. A. digital spectra from TDDFT and desktop learning in chemical house. J. Chem. Phys. 143, 084111 (2015).

  • 493.

    Blum, L. C. & Reymond, J.-L. 970 million druglike wee molecules for digital screening in the chemical universe database GDB-13. J. Am. Chem. Soc. 131, 8732–8733 (2009).

  • 494.

    Montavon, G. et al. computing device learning of molecular digital homes in chemical compound house. New J. Phys. 15, 095003 (2013).

  • 495.

    Sutton, C. et al. Nomad 2018 kaggle competition: fixing substances science challenges via crowd sourcing. Preprint at arXiv:1812.00085 (2018).

  • 496.

    Chard, R. et al. DLHub: mannequin and records serving for science. Preprint at arXiv:1811.11213 (2018).


  • Unquestionably it is difficult assignment to pick dependable certification questions/answers assets regarding review, reputation and validity since individuals accept sham because of picking incorrectly benefit. Killexams.com ensure to serve its customers best to its assets concerning test dumps update and validity. The vast majority of other's sham report dissension customers further to us for the brain dumps and pass their exams joyfully and effortlessly. They never trade off on their review, reputation and attribute on the grounds that killexams review, killexams reputation and killexams customer certitude is imperative to us. Uniquely they deal with killexams.com review, killexams.com reputation, killexams.com sham report objection, killexams.com trust, killexams.com validity, killexams.com report and killexams.com scam. On the off haphazard that you espy any mistaken report posted by their rivals with the title killexams sham report grievance web, killexams.com sham report, killexams.com scam, killexams.com protest or something infatuation this, simply recollect there are constantly dreadful individuals harming reputation of friendly administrations because of their advantages. There are a huge number of fulfilled clients that pass their exams utilizing killexams.com brain dumps, killexams PDF questions, killexams hone questions, killexams test simulator. Visit Killexams.com, their specimen questions and test brain dumps, their test simulator and you will realize that killexams.com is the best brain dumps site.


    LOT-914 study pilot | P2170-015 free pdf | COG-701 practice test | COG-135 questions and answers | 920-260 test prep | SPHR test questions | TB0-120 practice test | HP2-B99 study pilot | 1Z0-436 free pdf | GED practice questions | M8010-663 practice Test | AHM-540 cram | 70-516-CSharp practice test | 1Z0-510 test questions | P2070-092 demo test | JN0-692 test prep | 1K0-002 brain dumps | C4040-251 braindumps | 1Z0-1018 questions and answers | C2070-580 free pdf |



    310-220 actual questions | C2040-929 practice test | HP0-763 test prep | 7003 test prep | FSOT practice test | 6001-1 test prep | 922-097 examcollection | 650-665 questions and answers | AACN-CMC practice test | 77-883 free pdf | 920-453 practice test | HP2-N40 actual questions | CCD-410 test prep | P2180-089 mock test | H11-851 brain dumps | 000-979 pdf download | 200-601 braindumps | HP2-037 practice Test | HP2-Z18 free pdf | 000-P01 test questions |


    View Complete list of Killexams.com Certification test dumps


    1D0-520 dumps questions | C8010-250 study pilot | A2180-317 questions and answers | SSAT actual questions | 9A0-034 practice Test | P2040-052 bootcamp | 310-014 actual questions | 1Y0-309 free pdf download | VCS-411 braindumps | HP0-310 actual questions | 000-897 cram | ASC-029 test prep | C2030-284 mock test | HP0-S25 demo test | COG-706 free pdf | 000-656 study pilot | 000-117 practice test | 650-669 questions answers | ACF-CCP practice questions | 71-571 braindumps |



    List of Certification test Dumps

    3COM [8 Certification Exam(s) ]
    AccessData [1 Certification Exam(s) ]
    ACFE [1 Certification Exam(s) ]
    ACI [3 Certification Exam(s) ]
    Acme-Packet [1 Certification Exam(s) ]
    ACSM [4 Certification Exam(s) ]
    ACT [1 Certification Exam(s) ]
    Admission-Tests [13 Certification Exam(s) ]
    ADOBE [93 Certification Exam(s) ]
    AFP [1 Certification Exam(s) ]
    AICPA [2 Certification Exam(s) ]
    AIIM [1 Certification Exam(s) ]
    Alcatel-Lucent [13 Certification Exam(s) ]
    Alfresco [1 Certification Exam(s) ]
    Altiris [3 Certification Exam(s) ]
    Amazon [7 Certification Exam(s) ]
    American-College [2 Certification Exam(s) ]
    Android [4 Certification Exam(s) ]
    APA [1 Certification Exam(s) ]
    APC [2 Certification Exam(s) ]
    APICS [2 Certification Exam(s) ]
    Apple [71 Certification Exam(s) ]
    AppSense [1 Certification Exam(s) ]
    APTUSC [1 Certification Exam(s) ]
    Arizona-Education [1 Certification Exam(s) ]
    ARM [1 Certification Exam(s) ]
    Aruba [8 Certification Exam(s) ]
    ASIS [2 Certification Exam(s) ]
    ASQ [3 Certification Exam(s) ]
    ASTQB [11 Certification Exam(s) ]
    Autodesk [2 Certification Exam(s) ]
    Avaya [106 Certification Exam(s) ]
    AXELOS [1 Certification Exam(s) ]
    Axis [1 Certification Exam(s) ]
    Banking [1 Certification Exam(s) ]
    BEA [6 Certification Exam(s) ]
    BICSI [2 Certification Exam(s) ]
    BlackBerry [17 Certification Exam(s) ]
    BlueCoat [2 Certification Exam(s) ]
    Brocade [4 Certification Exam(s) ]
    Business-Objects [11 Certification Exam(s) ]
    Business-Tests [4 Certification Exam(s) ]
    CA-Technologies [20 Certification Exam(s) ]
    Certification-Board [10 Certification Exam(s) ]
    Certiport [3 Certification Exam(s) ]
    CheckPoint [45 Certification Exam(s) ]
    CIDQ [1 Certification Exam(s) ]
    CIPS [4 Certification Exam(s) ]
    Cisco [325 Certification Exam(s) ]
    Citrix [48 Certification Exam(s) ]
    CIW [18 Certification Exam(s) ]
    Cloudera [10 Certification Exam(s) ]
    Cognos [19 Certification Exam(s) ]
    College-Board [2 Certification Exam(s) ]
    CompTIA [79 Certification Exam(s) ]
    ComputerAssociates [6 Certification Exam(s) ]
    Consultant [2 Certification Exam(s) ]
    Counselor [4 Certification Exam(s) ]
    CPP-Institute [4 Certification Exam(s) ]
    CSP [1 Certification Exam(s) ]
    CWNA [1 Certification Exam(s) ]
    CWNP [14 Certification Exam(s) ]
    CyberArk [2 Certification Exam(s) ]
    Dassault [2 Certification Exam(s) ]
    DELL [13 Certification Exam(s) ]
    DMI [1 Certification Exam(s) ]
    DRI [1 Certification Exam(s) ]
    ECCouncil [23 Certification Exam(s) ]
    ECDL [1 Certification Exam(s) ]
    EMC [131 Certification Exam(s) ]
    Enterasys [13 Certification Exam(s) ]
    Ericsson [5 Certification Exam(s) ]
    ESPA [1 Certification Exam(s) ]
    Esri [2 Certification Exam(s) ]
    ExamExpress [15 Certification Exam(s) ]
    Exin [40 Certification Exam(s) ]
    ExtremeNetworks [3 Certification Exam(s) ]
    F5-Networks [20 Certification Exam(s) ]
    FCTC [2 Certification Exam(s) ]
    Filemaker [9 Certification Exam(s) ]
    Financial [36 Certification Exam(s) ]
    Food [4 Certification Exam(s) ]
    Fortinet [16 Certification Exam(s) ]
    Foundry [6 Certification Exam(s) ]
    FSMTB [1 Certification Exam(s) ]
    Fujitsu [2 Certification Exam(s) ]
    GAQM [9 Certification Exam(s) ]
    Genesys [4 Certification Exam(s) ]
    GIAC [15 Certification Exam(s) ]
    Google [5 Certification Exam(s) ]
    GuidanceSoftware [2 Certification Exam(s) ]
    H3C [1 Certification Exam(s) ]
    HDI [9 Certification Exam(s) ]
    Healthcare [3 Certification Exam(s) ]
    HIPAA [2 Certification Exam(s) ]
    Hitachi [30 Certification Exam(s) ]
    Hortonworks [4 Certification Exam(s) ]
    Hospitality [2 Certification Exam(s) ]
    HP [760 Certification Exam(s) ]
    HR [4 Certification Exam(s) ]
    HRCI [1 Certification Exam(s) ]
    Huawei [32 Certification Exam(s) ]
    Hyperion [10 Certification Exam(s) ]
    IAAP [1 Certification Exam(s) ]
    IAHCSMM [1 Certification Exam(s) ]
    IBM [1539 Certification Exam(s) ]
    IBQH [1 Certification Exam(s) ]
    ICAI [1 Certification Exam(s) ]
    ICDL [6 Certification Exam(s) ]
    IEEE [1 Certification Exam(s) ]
    IELTS [1 Certification Exam(s) ]
    IFPUG [1 Certification Exam(s) ]
    IIA [3 Certification Exam(s) ]
    IIBA [2 Certification Exam(s) ]
    IISFA [1 Certification Exam(s) ]
    Intel [2 Certification Exam(s) ]
    IQN [1 Certification Exam(s) ]
    IRS [1 Certification Exam(s) ]
    ISA [1 Certification Exam(s) ]
    ISACA [4 Certification Exam(s) ]
    ISC2 [6 Certification Exam(s) ]
    ISEB [24 Certification Exam(s) ]
    Isilon [4 Certification Exam(s) ]
    ISM [6 Certification Exam(s) ]
    iSQI [8 Certification Exam(s) ]
    ITEC [1 Certification Exam(s) ]
    Juniper [67 Certification Exam(s) ]
    LEED [1 Certification Exam(s) ]
    Legato [5 Certification Exam(s) ]
    Liferay [1 Certification Exam(s) ]
    Logical-Operations [1 Certification Exam(s) ]
    Lotus [66 Certification Exam(s) ]
    LPI [24 Certification Exam(s) ]
    LSI [3 Certification Exam(s) ]
    Magento [3 Certification Exam(s) ]
    Maintenance [2 Certification Exam(s) ]
    McAfee [9 Certification Exam(s) ]
    McData [3 Certification Exam(s) ]
    Medical [68 Certification Exam(s) ]
    Microsoft [393 Certification Exam(s) ]
    Mile2 [3 Certification Exam(s) ]
    Military [1 Certification Exam(s) ]
    Misc [2 Certification Exam(s) ]
    Motorola [7 Certification Exam(s) ]
    mySQL [4 Certification Exam(s) ]
    NBSTSA [1 Certification Exam(s) ]
    NCEES [2 Certification Exam(s) ]
    NCIDQ [1 Certification Exam(s) ]
    NCLEX [3 Certification Exam(s) ]
    Network-General [12 Certification Exam(s) ]
    NetworkAppliance [42 Certification Exam(s) ]
    NetworkAppliances [1 Certification Exam(s) ]
    NI [1 Certification Exam(s) ]
    NIELIT [1 Certification Exam(s) ]
    Nokia [7 Certification Exam(s) ]
    Nortel [130 Certification Exam(s) ]
    Novell [37 Certification Exam(s) ]
    OMG [10 Certification Exam(s) ]
    Oracle [314 Certification Exam(s) ]
    P&C [2 Certification Exam(s) ]
    Palo-Alto [4 Certification Exam(s) ]
    PARCC [1 Certification Exam(s) ]
    PayPal [1 Certification Exam(s) ]
    Pegasystems [17 Certification Exam(s) ]
    PEOPLECERT [4 Certification Exam(s) ]
    PMI [16 Certification Exam(s) ]
    Polycom [2 Certification Exam(s) ]
    PostgreSQL-CE [1 Certification Exam(s) ]
    Prince2 [7 Certification Exam(s) ]
    PRMIA [1 Certification Exam(s) ]
    PsychCorp [1 Certification Exam(s) ]
    PTCB [2 Certification Exam(s) ]
    QAI [1 Certification Exam(s) ]
    QlikView [1 Certification Exam(s) ]
    Quality-Assurance [7 Certification Exam(s) ]
    RACC [1 Certification Exam(s) ]
    Real Estate [1 Certification Exam(s) ]
    Real-Estate [1 Certification Exam(s) ]
    RedHat [8 Certification Exam(s) ]
    RES [5 Certification Exam(s) ]
    Riverbed [9 Certification Exam(s) ]
    RSA [15 Certification Exam(s) ]
    Sair [8 Certification Exam(s) ]
    Salesforce [5 Certification Exam(s) ]
    SANS [1 Certification Exam(s) ]
    SAP [98 Certification Exam(s) ]
    SASInstitute [15 Certification Exam(s) ]
    SAT [1 Certification Exam(s) ]
    SCO [10 Certification Exam(s) ]
    SCP [6 Certification Exam(s) ]
    SDI [3 Certification Exam(s) ]
    See-Beyond [1 Certification Exam(s) ]
    Siemens [1 Certification Exam(s) ]
    Snia [7 Certification Exam(s) ]
    SOA [15 Certification Exam(s) ]
    Social-Work-Board [4 Certification Exam(s) ]
    SpringSource [1 Certification Exam(s) ]
    SUN [63 Certification Exam(s) ]
    SUSE [1 Certification Exam(s) ]
    Sybase [17 Certification Exam(s) ]
    Symantec [136 Certification Exam(s) ]
    Teacher-Certification [4 Certification Exam(s) ]
    The-Open-Group [8 Certification Exam(s) ]
    TIA [3 Certification Exam(s) ]
    Tibco [18 Certification Exam(s) ]
    Trainers [3 Certification Exam(s) ]
    Trend [1 Certification Exam(s) ]
    TruSecure [1 Certification Exam(s) ]
    USMLE [1 Certification Exam(s) ]
    VCE [7 Certification Exam(s) ]
    Veeam [2 Certification Exam(s) ]
    Veritas [33 Certification Exam(s) ]
    Vmware [68 Certification Exam(s) ]
    Wonderlic [2 Certification Exam(s) ]
    Worldatwork [2 Certification Exam(s) ]
    XML-Master [3 Certification Exam(s) ]
    Zend [6 Certification Exam(s) ]





    References :


    Dropmark : http://killexams.dropmark.com/367904/11907344
    Dropmark : http://killexams.dropmark.com/367904/11907346
    Wordpress : http://wp.me/p7SJ6L-2ag
    Dropmark-Text : http://killexams.dropmark.com/367904/12884875
    Blogspot : http://killexamsbraindump.blogspot.com/2017/12/pass4sure-000-635-dumps-and-practice.html
    RSS Feed : http://feeds.feedburner.com/killexams/eHMC
    Box.net : https://app.box.com/s/vx2gznp8vecy7p6r0i3fiig99f6hdnt1
    MegaCerts.com Certification test dumps






    Back to Main Page





    Killexams 000-635 exams | Killexams 000-635 cert | Pass4Sure 000-635 questions | Pass4sure 000-635 | pass-guaratee 000-635 | best 000-635 test preparation | best 000-635 training guides | 000-635 examcollection | killexams | killexams 000-635 review | killexams 000-635 legit | kill 000-635 example | kill 000-635 example journalism | kill exams 000-635 reviews | kill exam ripoff report | review 000-635 | review 000-635 quizlet | review 000-635 login | review 000-635 archives | review 000-635 sheet | legitimate 000-635 | legit 000-635 | legitimacy 000-635 | legitimation 000-635 | legit 000-635 check | legitimate 000-635 program | legitimize 000-635 | legitimate 000-635 business | legitimate 000-635 definition | legit 000-635 site | legit online banking | legit 000-635 website | legitimacy 000-635 definition | >pass 4 sure | pass for sure | p4s | pass4sure certification | pass4sure exam | IT certification | IT Exam | 000-635 material provider | pass4sure login | pass4sure 000-635 exams | pass4sure 000-635 reviews | pass4sure aws | pass4sure 000-635 security | pass4sure cisco | pass4sure coupon | pass4sure 000-635 dumps | pass4sure cissp | pass4sure 000-635 braindumps | pass4sure 000-635 test | pass4sure 000-635 torrent | pass4sure 000-635 download | pass4surekey | pass4sure cap | pass4sure free | examsoft | examsoft login | exams | exams free | examsolutions | exams4pilots | examsoft download | exams questions | examslocal | exams practice |

    www.pass4surez.com | Braindumps Download | www.search4exams.com | http://www.sraigalleries.com/